[1] Kaswan, A., Prasanta, K. J., & Sajad, K. D. (2021). A survey on mobile charging techniques in wireless rechargeable sensor networks. IEEE Communications survey & tutorials, 24(3), 1750-1779.
[2] Liu, X., Obaidat, M. S., Lin, C., Wang, T., & Liu, A. (2021). Movement-based solutions to energy limitation in wireless sensor networks: State of the art and future trends. IEEE Netw., 35(2), 188–193.
[3] Boukerche, A., Wu, Q., & Sun, P. (2022). A novel two-mode QoS-aware mobile charger scheduling method for achieving sustainable wireless sensor networks. IEEE Trans. Sustain. Comput., 7(1), 14–26.
[4] Mukase, S., Xia, K., Umar, A., & Owoola, E. O. (2022). On‐Demand Charging Management Model and Its Optimization for Wireless Renewable Sensor Networks. MDPI Sensors, 22(384), 1-17.
https://doi.org/10.3390/s22010384
[5] Tomar, A., Muduli, L., & Jana, P. K. (2021). A fuzzy logic-based on-demand charging algorithm for wireless rechargeable sensor networks with multiple chargers. IEEE Trans. Mobile Comput., 20(9), 2715–2727.
[6] Zhou, P., Wang, C., & Yang, Y. (2021). Design of self-sustainable wireless sensor networks with energy harvesting and wireless charging. ACM Trans. Sensor Netw., 17(4), 1–38.
[7] Wang, Y., Wang, F., Liu, Y., & Zhao, C. (2021). Optimization strategy of wireless charger node deployment based on improved cuckoo search algorithm. EURASIP journal on wireless communication and networking,
https://doi.org/10.1186/s13638-021-01951-1
[8] Sandhu, M. M., Khalifa, S., Jurdak, R., & Portmann, M. (2021). Task scheduling for energy harvesting-based IoT: A survey and critical analysis. IEEE Internet of Things J., 8(18), 13825–13848.
[9] Sun, Y., Lin, C., Dai, H., Lin, Q., Wang, L., & Wu, G. (2022). Trading off charging and sensing for stochastic events monitoring in WRSNs. IEEE/ACM Trans. Netw., 30(2), 557–571.
[10] Gharaei, N., Al-Otaibi, Y. D., Butt, S. A., Malebary, S. J., Rahim, S., & Sahar, G. (2021). Energy-efficient tour optimization of wireless mobile chargers for rechargeable sensor networks. IEEE Syst. J., 15(1), 27–36.
[11] Tsoumanis, G., Oikonomou, K., Aïssa, S., & Stavrakakis, I. (2021). Energy and distance optimization in rechargeable wireless sensor networks. IEEE Trans. Green Commun. Netw., 5 (1), 378–391.
[12] He, L., Kong, L., Gu, Y., Pan, J., & Zhu, T. (2015). Evaluating the on-demand mobile charging in wireless sensor networks. IEEE Trans. Mobile Comput., 14(9), 1861–1875.
[13] Liu, Y. et al. (2022). Joint scheduling and trajectory optimization of charging UAV in wireless rechargeable sensor networks. IEEE Internet of Things J., 9(14), 11796–11813.
[14] Chen, L., Lin, S., Huang, H., & Yang, W. (2022). Charging path optimization in mobile networks, IEEE/ACM Trans. Netw., early access 26, doi:
10.1109/TNET.2022.3167781.
[15] Rohit, K., & Joy, C. M. (2020). Charge Scheduling in wireless rechargeable sensor network using mobile charging vehicle. In: 12th international conference on communication and networking (COMSNETS), IEEE Explore, 373-382.
[16] Kumar, R., & Mukherjee, J. C. (2021). On-demand vehicle-assisted charging in wireless rechargeable sensor networks. Ad Hoc Netw., 112(102389).
[17] Wang, Y., Dong, Y., Li, S., Huang, R., & Shang, Y. (2019). A new on-demand recharging strategy based on cycle-limitation in a WRSN. Symmetry, 11(8), 1028.
[18] Tomar, A., Muduli, L., & Jana, P. K. (2021). A fuzzy logic-based on-demand charging algorithm for wireless rechargeable sensor networks with multiple chargers. IEEE Trans. Mobile Comput., 20(9), 2715–2727.
[19] Lin, C., Wang, Z., Deng, J., Wang, L., Ren, J., & Wu, G. (2018, April). MTS: Temporal and spatial collaborative charging for wireless rechargeable sensor networks with multiple vehicles. In: Proceedings of 37th IEEE Conference on Computer Communication (INFOCOM), 99–107.
[20] Tsoumanis, G., Oikonomou, K., Aïssa, S., & Stavrakakis, I. (2021). Energy, distance optimization in rechargeable wireless sensor networks. IEEE Trans. Green Commun. Netw.,5(1), 378–391.
[21] Liu, T., Wu, B., Xu, W., Cao, X., Peng, J., & Wu, H. (2021). RLC: A reinforcement learning-based charging algorithm for mobile devices. ACM Trans. Sensor Netw., 17(4), 1–23.
[22] Kaswan, A., Tomar, A., & Jana, P. K. (2018). A GSA-based scheduling scheme for mobile charger in on-demand wireless rechargeable sensor network. Journal of network and computer applications (JNCA), 10(18), 1-26, doi: 10.1016/j.jnca.2018.02.017.
[23] Gharaei, N., Al-Otaibi, Y. D., Butt, S. A., Malebary, S. J., Rahim, S., & Sahar, G. (2021). Energy-efficient tour optimization of wireless mobile chargers for rechargeable sensor networks. IEEE Syst. J., 15(1), 27–36.
[24] Dong, Y., Wang, Y., Li, S., Cui, M. & Wu, H. (2019). Demand-based charging strategy for wireless rechargeable sensor networks. ETRI Journal, 1(1), 326–336.
[25] Xing, Y., Young, R., Nguyen, G., Lefebvre, M., Zhao, T., Pan, H., & Dong, L. (2022). Optimal path planning for wireless power transfer robot using area division deep reinforcement learning. Wireless power transfer Cambridge university press, 1-10, doi: 10.1155/2022/9921885.
[26] Ma, C., An, S., Wang, W., Lin, D., Li, M., & Sun, L. (2020). Wireless sensor network charging strategy based on modified ant colony algorithm. International journal of materials, mechanics and manufacturing, 8(3), 155-161.
[27] Han, G., Liao, Z., Martínez-García, M., Zhang, Y., & Peng, Y. (2021). Dynamic collaborative charging algorithm for mobile and static nodes in Industrial Internet of Things. IEEE Internet of Things J., 8(24), 17747–17761.
[28] Huang, J., Zhou, Y., Ning, Z., & Gharavi, H. (2019). Wireless power transfer and energy harvesting: Current status and future prospects. IEEE Wireless Commun., 26(4), 163–169.
[29] Bui, N., Nguyen, P., Nguyen, V. A., & Do, P. T. (2022). A deep reinforcement learning based adaptive charging policy for WRSNs. 1-9, doi: 2208.07824v1.
[30] Hazra, A., Adhikari, M., Amgoth, T., & Srirama, S. N. (2021). A comprehensive survey on interoperability for IoT: Taxonomy, standards, and future directions. ACM Comput. Surveys, 55(1), 1–35.