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 Flooding is the third biggest disaster in the world according to the World Meteorological 

Organization. Several methods like numerical models, physical models, and Machine Learning 

(ML) models have been engaged in flood prediction to minimize the impact of flooding. Despite 

the improvements experienced in the use of some ML methods, there are still drawbacks due to 

accuracy. Hence, this study evaluated Categorical Boosting Algorithm (CatBoost) for flood 

prediction based on some evaluation metrics. Relevant flood-predictive factors were identified 

from the Osun River basin. The data was split into 70% for the training and 30% for the testing 

of the algorithm. The flood dataset was imported into the CatBoost Algorithm using Python 

programming language with the default parameters of the algorithm. The algorithm was 

evaluated using accuracy, precision, sensitivity, and multiclass loss function. The results showed 

that the accuracy, precision, and sensitivity of the CatBoost Algorithm were 92.48%, 63.82%, 

and 85.86% respectively. The result of the multiclass loss function during validation was 

0.165874, which was significantly lower than the result during training, which was 0.925104. 

This indicates that the algorithm is overfitting the training data and is not generalizing well to 

new data. This can be a prospect for further study. 
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1. Introduction 

The Categorical Boosting Algorithm (CatBoost) algorithm has gained prominence in developing 

predictive models by leveraging historical data [4]. CatBoost, a Gradient Boosting Decision Trees (GBDT) 

method, excels in handling categorical features during training [2], making it suitable for diverse 

applications like ranking, forecasting, and recommendations [11]. Floods, exacerbated by climate change, 

pose severe threats globally, necessitating accurate prediction. While numerous factors contribute to 

flooding, including climate change and human activities, developing precise flood prediction models 

remains challenging [13], [14]. This study focuses on applying the CatBoost algorithm to flood prediction, 

an area where it has not been previously implemented. The Osun River basin in Nigeria serves as the study 

area to acquire satellite remote sensing data for flood resource variables. Floods are recurrent and impactful 

in Nigeria due to climate change, necessitating reliable prediction systems for mitigation and emergency 

response [10],[5]. The study aims to assess the CatBoost algorithm's performance using accuracy, precision, 

sensitivity, and multiclass loss function as metrics, to enhance flood spatial prediction accuracy. Even 

though machine learning has demonstrated promise in predicting floods from remotely sensed Earth 
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Observation data [12], achieving high prediction accuracy remains a challenge [1]. This research seeks to 

address this gap by evaluating the suitability of CatBoost for flood prediction, potentially offering a valuable 

tool for improving flood control, emergency response, and water resources management. As floods continue 

to pose significant threats, accurate flood prediction models are crucial for minimizing damage and ensuring 

effective disaster management [15],[3]. This study intends to contribute to advancing flood prediction 

capabilities, thereby enhancing societal resilience and response strategies. 

 

 
 

2. Background 

In this study, ten flood conditioning factors, including rainfall, topographic water index (TWI), slope, 

drainage density, digital elevation model (DEM), soil data, distances, NDVI, and land use, were analyzed 

for the 2018 flood event. The Oṣun River Basin is the study area, the Osun River flows southwards through 

Yoruba land in southwestern Nigeria, passing six states. The 10 conditioning flood factors were weighed 

based on their importance using the Analytic Hierarchy Process (AHP). AHP is a decision-making method 

used in remote sensing and geographic information science to organize and analyze complex decisions. It 

combines mathematics and psychology to compare several options and assign each criterion an importance 

weight based on pairwise comparisons. Rainfall data from PERSIANN-CDR and DEM from Copernicus 

were used to assess flooding. ArcGIS processed DEM, slope, Landsat imagery, TWI, and drainage density. 

Soil data from FAO's portal determined water-holding capacity. Land use and wetlands were mapped in 

ArcMap, drainage lines calculated density, and factors like distance from rivers and LULC were evaluated. 

Geomorphic elements were derived from DEM, while NDVI indicated vegetation health. TWI identified 

potential floodplains and the AHP prioritized flood factors. The created maps were converted into numerical 

data which were extracted at every 100-meter interval into an Excel sheet in a CSV file. A sample of the 

extracted data is shown in Table 1.  

TABLE 1: A Cross Section of the dataset for the year 2018 
 

 
 

 
It shows the longitude, latitude, the 10 conditioning factors and the flood susceptibility based on the ten 

factors. The data was classified based on flood susceptibility as; 1 representing Very low, 2 representing 

Low, 3 representing Moderate, 4 representing High and 5 representing Very High.  A total of 930,789 

locations represented by longitude and latitude were identified in the study area. The key metrics occupy 
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columns of the Excel sheet which form the dataset in the raw format. Data preprocessing libraries such as 

pandas and machine learning libraries like spark ml were used while the datasets were converted into a data 

frame. This data frame serves as the input to the machine learning pipeline. With the data frame, all the 

columns of the data were checked for abnormalities such as missing values, null values, outliers and others. 

 

 

3. Evaluation of the Performance of the CatBoost Algorithm 

From the extract of the dataset, the flood susceptibility is the dependent feature while the conditioning 

factors are the independent features which are rainfall data, topographic water index (TWI), slope, drainage 

density, digital elevation model, soil data, distances from roads, normalized difference vegetation index 

(NDVI), distance from rivers, and land use land cover (LULC) data. This makes this prediction a multiclass 

prediction using the CatBoost Algorithm. The study utilized the CatBoost algorithm for flood prediction, 

employing the geospatial database with a 70:30 data split for training and validation. Metrics including 

accuracy, precision, sensitivity, and the multiclass loss function assess the algorithm's efficacy. CatBoost 

Algorithm's distinctive features like ordered boosting and categorical handling are highlighted, addressing 

target leakage via random permutations. It operated in ordered and plain modes, influencing tree structure 

choice. Hyperparameters, such as learning rate, tree count, regularization, and categorical feature 

combinations, were examined, guided by default settings. These key hyperparameters are analyzed within 

constraints. Tree count ranges from 100 to 1000 to control model complexity. The learning rate, affecting 

adaptation, is restricted between 0.001 and 0.01. Maximum tree depth, influencing complexity, ranges from 

1 to 10. Regularization (L1 and L2) is constrained between 0 and 3 to control complexity. These constraints 

impact the multiclass equation in categorical boosting, contributing to improved flood prediction. 

 

 

4. Results from Flood Prediction Using CatBoost Algorithm 

The dataset includes flood susceptibility as the dependent feature and various conditioning factors as 

independent features, making it a multiclass prediction problem using the CatBoost Algorithm. After 

importing the data into Jupyter Notebook, 930,789 locations were analyzed for the year 2018. To ensure 

accurate predictions, the dataset was split into training and test sets, with a test size of 0.3 and a 

corresponding training set size of 0.7. This split helps validate the model's performance on new data. The 

CatBoost classifier was applied to the dataset with initial settings of 100 iterations and a learning rate of 0.5, 

while later optimizing the learning rate to 0.1658737041 and the model tree count to 399. The results of 

training and validating the model are presented in Table 2, showing accuracy. To assess the model's 

performance, the loss function was used to determine feature importance for improved training. The 

confusion matrix was utilized to calculate metrics such as accuracy, precision, and sensitivity. The matrix 

contains five rows and columns, representing different flood risk classes (very low to very high). Table 3, 

Table 4, Table 5, Table 6 and Table 7 show the results of the analyzed specific class predictions: It was 

observed from class 1 that the model correctly predicted 474 instances and the false negative predictions are 

209 instances. For class 2, the model correctly predicted 85 instances and falsely predicted 285 instances as 

negative. For class 3, the model correctly predicted 107,616 instances and falsely predicted 22,316 instances 

also as negative. For class 4, the model correctly predicted 133,829 instances and falsely predicted 11,294 

instances as negatives. Lastly, for class 5, the model correctly predicted 1,854 instances and falsely predicted 

268 instances as negative. This analysis demonstrates how the CatBoost Algorithm was employed for 

multiclass flood risk prediction, splitting the dataset for training and testing, optimizing model parameters, 

and evaluating predictions through various performance metrics, ultimately providing insights into different 

flood risk levels. 
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TABLE 2: Results of Flood Prediction Using 2018 Dataset 

 

  Training validation 

Total 

Dataset 

(930,789) 

    

Accuracy 0.92708 0.925104 

Multiclass 0.9251 0.165874 

 

 

TABLE 3: Results for Very Low Flood Susceptibility 

 

Actual Class   
Predicted 

Class 

Total Test 

Data 

(279,236) 

    

  Positive Negative 

Class 1 474 (TP) 
278,586 

(TN) 

  134 (FP) 209 (FN) 

 

TABLE 4: Results for Low Flood Susceptibility 

 

Actual Class   
Predicted 

Class 

Total Test 

Data 

(279,236) 

    

  Positive Negative 

Class 2 85 (TP) 278,846 (TN)  

  20 (FP) 285 (FN) 

 

TABLE 5: Results for Moderate Flood Susceptibility 

 

Actual Class   
Predicted 

Class 

Total Test Data (279,236)     

  Positive Negative 

Class 3 
107,616 

(TP) 

138,009 

(TN)  

  11,295 (FP) 22,316 (FN) 

 

TABLE 6: Results for High Flood Susceptibility 
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Actual Class   
Predicted 

Class 

Total Test 

Data (279,236) 
    

  Positive Negative 

Class 4 133,829 (TP) 110,444 (TN)  

  23,669 (FP) 11,294 (FN) 

 

TABLE 7: Results for Very High Flood Susceptibility 

 

Actual Class   
Predicted 

Class 

Total Test Data 

(279,236) 
    

  Positive Negative 

Class 5 
1,854 

(TP) 
273,700 (TN)  

  334 (FP) 2,268 (FN) 

 

 

 

5. Error Analysis 

The evaluation of the algorithm for flood prediction focused on accuracy, employing performance 

metrics such as precision, sensitivity, and accuracy in order to examine the misclassifications in the 

prediction. Accuracy is determined by the correct utilization of the error between predicted and actual 

values. The model's performance is assessed using a test dataset representing 30% of the total dataset. 

Precision, sensitivity (or recall rate), and accuracy are vital metrics in this evaluation. Accuracy measures 

the proportion of true outcomes (true positives and true negatives) in the system, indicating the system's 

exactness. Sensitivity, or recall rate, gauges the model's ability to correctly identify positive cases of 

flooding relative to the total actual positive cases. High sensitivity signifies effective flood detection, while 

low sensitivity indicates the model's failure to detect some positive cases, potentially leading to incomplete 

flood predictions. Precision, a performance metric, assesses the proportion of accurate flood predictions 

among all predictions made by the model. High precision indicates accurate predictions, enhancing the 

model's trustworthiness for informed flood response and mitigation. A low precision, however, leads to 

more false positive predictions, possibly resulting in unnecessary emergency measures. Thus, a flood 

prediction model with low precision might require algorithm refinements to reduce false alarms and 

improve its overall performance. 

 

The values of the performance metrics are shown in Table 8. The bar chart of the performance metrics 

is shown in Figure 1. The model has high accuracy for all classes, ranging from 89.5% to 93.2%. The values 

of the sensitivity for the five classes range from 29.4% to 96.9%, indicating that the model has a varying 

degree of confidence in its positive predictions for each class. The precision values for the five classes range 

from 66.6% to 95.0%, indicating that the model is better at detecting some classes than others. The precision 

and sensitivity values of the model indicate that the model's performance may vary depending on the class 

being predicted. Decision tree-based machine learning models particularly Extreme Gradient Boosting 

(XGBoost) ML has been adopted for flood prediction and performed best with an accuracy of 0.84 [6]. 

Another study suggested employing a random forest algorithm for flash-flood forecasting [9]. The findings 
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show that, given ideal inputs made up solely of features that account for 80% of the model's outcome 

variance, the generated parsimonious models can achieve validation efficiencies [9]. Although still quite 

high, the precision can be raised. Using an artificial neural network (ANN) with rainfall and temperature as 

inputs, a similar study created a flood prediction model in Nigeria that predicted the Standard Precipitation 

Index (SPI) [7]. Limitations in flood prediction include problems with data management, network 

architecture, and model interpretation, even with a 76% accuracy rate. ANNs result in a relatively low 

accuracy in flood prediction which is a serious drawback [8]. 

 

TABLE 8: Performance Metrics of the Classes 

 

Class  
Accuracy 

(%) 

Sensitivity 

(%) 

 

Precision 

(%) 
predicted 

Class 1 92.3 29.4 87.7 

Class 2 89.5 34.4 66.6 

Class 3 93.2 87.1 95 

Class 4 92.6 96.9 91.1 

Class 5 92.9 71.3 88.9 

 

 

 

 

Figure 1  Bar chart Performance Metrics for the Existing CatBoost Algorithm 

 

 

 

 
 

6. Conclusions and Future work  

The multiclass loss function during validation is 0.165874, significantly lower than the training result of 

0.925104, suggesting overfitting to training data. A low loss indicates accurate classification, while a high 
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value suggests errors. Overfitting arises when a complex model learns training noise, hurting generalization 

to new data. It excels in training but fails in validation. To counter this, there is a need to optimize categorical 

boosting by tuning hyperparameters like learning rate, tree depth, and regularization strength. L1/L2 

regularization penalizes large weights, promoting simpler models for better generalization. Early stopping 

closes training on degraded validation performance. Optimal hyperparameters enhance generalization, 

reducing loss on both sets. 

The future work that needs to be done is to design and implement an optimized CatBoost Algorithmic 

model for flood prediction. There is a need to explore the integration of additional data sources and to test 

the model in different geographic regions in future works to be done.  Ensemble learning techniques can 

also be adopted to further enhance prediction accuracy. Lastly, to compare the performance with the existing 

CatBoost Algorithm. 
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