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 Cloud computing has significantly transformed the IT industry through cost-efficient solutions, 

offering scalable Data. In the cloud, data may be more vulnerable than data on on-site premises. 

However, its rapid adoption has also introduced new cyber security risks as systems become 

increasingly vulnerable to sophisticated attacks. Traditional Intrusion Detection Systems (IDS) 

often face challenges in identifying and mitigating advanced persistent threats, zero-day exploits, 

and other real-time cyber threats, especially within dynamic cloud environments. This paper 

analyzes and evaluates the detection of cyber threats in cloud security, focusing on challenges 

related to recognition, aggregation, and dissemination within user system environments. The 

research comprehensively review recent studies have leveraged artificial intelligence (AI) 

methodologies to enhance cyber threat detection. Different deep learning and machine learning 

approaches are compared based on multiple optimization criteria, including dataset 

characteristics, simulation environments, real-world deployments, scalability, detection 

accuracy, coverage of threat types, and overall system performance. Our primary purpose is to 

offer ideas for the latest progression in cyber-attacks detection in AI, identifying the limitations, 

open research questions and suggesting potential enhancement for unresolved security 

challenges. 
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1. Introduction 

Securing cloud environments from sophisticated cyber threats remains a core challenge in today's fast-

developing digital ecosystem [37]. Traditional signature-based Network Intrusion Detection Systems 

(NIDS) operate by matching predefined attack signatures with incoming network traffic. While this 

approach is practical for detecting known threats, it struggles to identify new and evolving attack patterns. 

Restricting and reducing its adaptability in dynamic cloud environments. To overcome these shortcomings, 

anomaly-based NIDS leveraging (ML) and (DL) have gained attention. Fixed signatures are limited by this 

dynamic approach, which stresses the detection of anomalies in established network behavior. Although 

they have advantages, such models face important obstacles, including difficulties adapting to rapidly 

evolving attack strategies, high false positive rates, and scalability concerns [37]. The opaque decision-

making processes of machine learning and deep learning models often create barriers to interpretability, 

which can hinder cybersecurity professionals from fully understanding or trusting the system outputs [38]. 

Addressing this issue requires the development of intrusion detection systems that balance accuracy, 

scalability, and transparency—particularly within the evolving landscape of cloud security. 

This research presents a detailed literature review, analyzing Forty-eight studies published between 2018 

and 2025 investigating the application of ML and DL in anomaly-based NIDS and different topics in IOT. 

These studies cover various aspects, including accuracy improvement, false positive rate reduction, and 

real-time processing efficiency. Additionally, some works emphasize critical challenges such as 

computational overhead, class imbalance, and the interpretability of deep learning architectures. The 
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insights gathered from these studies provide a foundation for identifying gaps in existing methodologies 

and formulating an optimized approach for anomaly-based intrusion detection in cloud environments. 

 

 Research Methodology 

The research methodology follows a structured four-phase approach: Phase 1 (Article Selection), Phase 

2 (Article Classification), Phase 3 (Article Analysis), and Phase 4 (Discussion and Future Directions). Each 

phase has its role in an organized manner, evaluating the literature. 

Phase 1: Article Selection – This initial phase identifies and filters relevant research papers. 

Database Selection: To ensure credibility and relevance, articles are sourced from established databases, 

including ResearchGate (https://www.researchgate.net), MDPI (https://www.mdpi.com/), Springer, and 

ScienceDirect (https://www.sciencedirect.com/). 

Screening & Filtering: Research papers are evaluated based on predefined criteria, such as relevance to 

anomaly-based NIDS, recent publication, and alignment with the study's objectives. Only high-quality 

studies meeting these requirements are included for further analysis.  

 

 
 

FIGURE 1: Number of Papers used in Survey, Research and Review Articles 

 

A research article [40 papers] aims to describe a particular research study that was completed and will 

be based on the analysis and the interpretation of this data and based on original research. While a review 

article [8 papers] discusses the state of the field you are investigating and based on other published articles 

Review articles can be of 3 types: 

 A narrative review - explains the existing knowledge based on all the published research. 

 A systematic review - find the answer to a particular question in the existing scientific. 

 A meta-analysis - combines and compares the findings of previously published studies. 

 

Phase 2: Article Classification  

The selected research papers are systematically categorized based on several key factors, including the 

methodologies employed (e.g., machine learning and deep learning techniques), the type of Intrusion 

Detection System (IDS) (network-based or host-based), and the primary challenges addressed (such as 

reducing false positives and improving real-time detection capabilities). As seen in Figure 1, this 

classification shows a structured approach for analyzing current research while identifying developing 

trends in anomaly-based NIDS. 

Phase 3: Article Analysis 
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This phase includes thoroughly assessing the selected studies, summarizing key findings, and 

highlighting existing research challenges. A critical assessment is conducted to pinpoint gaps in the current 

literature that require further investigation. 

Phase 4: Discussion and Future Scope 

key findings from the analysis are evaluated, focusing on outlining future research directions and 

identifying potential solutions. The methodology follows a systematic framework for selecting, 

categorizing, analyzing, and discussing research papers. This structured approach ensures a comprehensive 

understanding of anomaly-based intrusion detection systems' latest advancements, limitations, and future 

possibilities. 

 

1. Background Information 

1.1. This section provides an overview of the key focus areas of our survey. We begin by discussing 

Intrusion Detection Systems (IDS) and the challenges associated with aggregation and dissemination in 

anomaly-based Network Intrusion Detection Systems (NIDS). Following this, we explore various AI 

techniques employed to enhance the effectiveness of anomaly-based NIDS. 

 

1.2. Data Collection 

Dataset selection is a crucial step in training an anomaly-based Network Intrusion Detection System   

(NIDS) using ML and DL techniques. Dataset quality and diversity efficiently affect the model's ability to 

generalize, maintain accuracy, and effectively detect cyber threats in real-world environments. Different 

dataset combinations enhance the model's robustness of the mode, ensuring adaptability across different 

network conditions and threat landscapes.  

 

1.3. AI Techniques 

Once the dataset has been obtained and preprocessed, the next phase involves a structured approach to 

model selection, feature engineering, and deployment to develop a high-accuracy anomaly-based Network 

Intrusion Detection System (NIDS). 

Baseline Machine Learning Models 

 Random Forest (RF) and XGBoost are initially employed due to their effectiveness in handling 

imbalanced datasets and their ability to provide interpretable feature importance scores. 

 RF's ensemble learning mechanism reduces overfitting by combining multiple decision trees for 

improved prediction stability. 

 XGBoost enhances detection accuracy and optimizes decision-making in intrusion detection tasks, 

which leverages gradient boosting. These models serve as baselines before transitioning to more advanced 

deep-learning architectures. These models serve as baselines before transitioning to more advanced deep 

learning architectures. 

Deep Learning Models 

For improved accuracy and adaptability, a hybrid CNN-LSTM model is implemented: 

 Convolutional Neural Networks (CNNs) extract spatial patterns from network traffic data. 

 Temporal dependencies are captured by Long-short-term memory(LSTM) networks; the system is 

allowed to recognize the sequential attack behavior.  

Additionally, a Transformer-based IDS model incorporating self-attention mechanisms is deployed to 

detect subtle and complex attack patterns, enhancing contextual awareness and anomaly detection. 

Feature Engineering and Optimization  -To refine model performance and efficiency: 

 Principal Component Analysis (PCA) reduces dimensionality of large datasets by transforming a 

large set of variables into smaller one that still contains most of the information in the large dataset. 

 Recursive Feature Elimination (RFE) identifies the most relevant features, enhancing model 

interpretability and reducing computational overhead. 
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 SMOTE (Synthetic Minority Oversampling) is a statistical technique to address the class imbalance, 

generating synthetic samples to prevent bias toward majority classes and improve generalization.  

Model Training and Performance Evaluation 

 Bayesian optimization is used for hyperparameters tuning, adjusting learning rates, batch sizes, and 

network architectures to achieve optimal performance. 

 ReLU activation functions introduce non-linearity, enabling the model to learn complex attack 

patterns. 

 10-fold cross-validation systematically evaluates model stability and prevents overfitting. 

 F1-score, recall, and precision are prioritized to ensure a balance between detecting real threats and 

minimizing false alarms, as accuracy alone is insufficient in cybersecurity applications.  

Deployment and Real-World Integration -For seamless  real-world application, the trained model is: 

 Containerized using Docker and orchestrated with Kubernetes for scalability. 

 Deployed on AWS, ensuring computational efficiency and adaptability to changing network 

conditions. 

 Optimized with TensorFlow Serving, reducing inference latency for real-time intrusion detection. 

 Equipped with an automated retraining pipeline to update the model continuously as new cyber 

threats emerge. 

 Integrated with Edge Computing to process network traffic closer to the source in latency-sensitive 

environments, enabling faster anomaly detection and response. Docker + Kubernetes focuses on 

containerization and orchestration, enabling efficient management and scaling of NIDS components. AWS 

deployment provide adaptable infrastructure ,computational resources, certifying adaptability and cost-

effectiveness. 

 

2. Related Works 

Recent research has explored the application of artificial intelligence in improving cyber security 

measures in cloud environments, especially in real-time threat detection. One important contribution was 

made by [3], who suggested a transfer learning-based intrusion detection system designed for encrypted 

and heterogeneous network environments. Even though their work was not obviously cloud-focused, the 

model's flexibility suggests strong potential for adaptation to multi-tenant cloud infrastructures, in which 

encryption and heterogeneous protocols dominate. Building on the theme of feature learning, they 

introduced an end-to-end intrusion detection framework; they designed a hierarchical Convolutional Neural 

Network (CNN) and Gated Recurrent Unit (GRU) model to facilitate the automated extraction of 

spatiotemporal features from raw traffic data. This method's ability to process high-dimensional data renders 

it highly applicable to the dynamic and scalable architecture of cloud environments. The framework is 

assessed utilizing commonly employed datasets, namely, CIC-IDS2017 and CSE-CIC-IDS2018. The 

experiments demonstrate that our method can attain a detection accuracy of 99.9% for known attacks, thus 

achieving state-of-the-art performance. Our method also achieved a recall rate of over 95% for all unknown 

attacks.  

Focusing on predictive analytics, [6] developed a machine learning-enabled cyber event forecasting 

system utilizing SVM, Random Forest, and time series analysis techniques. While initially intended for 

general cybersecurity use, the predictive capabilities of their model could enhance proactive threat detection 

in cloud computing systems. Also [8], the use of deep learning coupled with data augmentation strategies 

to enhance intrusion detection systems was explored. Their approach focused on overcoming data scarcity 

and imbalance challenges. It is mainly relevant to cloud security, where different and rapidly evolving 

datasets are standard. 

Moving to particular cloud-focused solutions, [9] a robust intrusion detection system designed to detect 

malicious activities within cloud environments was proposed. Their model combined Radial Basis Function 

Neural Networks with Random Forest classifiers to reach high detection accuracy while keeping 
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computational efficiency. The authors highlighted the importance of developing AI-based security 

mechanisms that adapt to the accessible and dynamic nature of cloud computing systems to reduce and 

overcomed the limitations of traditional intrusion detection solutions. 

In the realm of real-time detection, [10] proposed a machine learning-based multi-class classification 

system for IoT attacks using the One-vs-Rest strategy and SMOTE for dataset balancing. Though developed 

for IoT contexts, the real-time responsiveness and data balancing techniques align closely with the 

operational needs of cloud-native security systems. Adding to this, [11] introduced a near-real-time 

intrusion detection system making use of supervised learning with Apache Spark, a framework widely 

adopted in distributed cloud architectures. Their focus on minimizing detection latency and maximizing 

scalability is directly applicable to cloud-based environments where speed and resilience are critical. 

In terms of web-based real-time solutions adaptable to cloud services, [39] developed AI-IDS, a real-

time web intrusion detection system based on CNN and LSTM architectures. Although primarily targeting 

web applications, the real-time capabilities and scalability of AI-IDS make it highly suitable for securing 

cloud-hosted services where rapid threat mitigation is vital. 

Other works have also demonstrated methodologies adaptable for cloud-based real-time intrusion 

detection. For example, [25] proposed zero-day attack detection models in streaming data environments, 

applying Random Forests and Hoeffding trees to manage continuous data flows. Their approach is naturally 

aligned with the streaming and dynamic data processing demands of cloud computing. Additionally, [37] 

addressed DoS attack detection in IoT networks using a suite of machine learning algorithms, including 

Deep Neural Networks and XGBoost. Despite being focused on IoT, the scalability and robustness of their 

models position them well for adaptation into cloud-centric security frameworks. 

Finally, it offered a hybrid deep learning model explicitly targeting AWS cloud environments[41]. 

Detecting complicated cyber threats on a large scale demonstrated significant improvement by 

incorporating LSTM with RF classifiers. The diversity and volume of cloud traffic are handled by the 

effectiveness of combining deep learning with ensemble techniques, ensuring real-time threat detection.  

Complementarily, [46] introduced an AI-enabled system for efficient and effective cyber incident 

detection and response across cloud platforms such as Google Cloud and Microsoft Azure. Their approach 

integrated and combined RF models for network traffic classification and focused heavily on real-time 

incident response capabilities. Achieving up to 96% accuracy in malware analysis, the system emphasized 

high detection precision and rapid automated response, aligning perfectly with the needs of real-time cloud 

security. The previous advancements focus on the crucial role of AI and how it is a proactive and intelligent 

cyber defense mechanism within cloud ecosystems. 

In line with the growing demand for robust cloud security, [47] proposed an AI-powered intrusion 

detection system tailored for next-generation cloud environments. Their model, leveraging deep learning 

techniques and evaluated on the NSL-KDD dataset, achieved a significant detection accuracy of 98.68%. 

Deployment in dynamic cloud infrastructures is made and optimized for real-time threat detection by low 

false negatives and minimal latency. The model's performance illustrates the significant potential of 

advanced deep learning architectures in securing cloud environments against evolving cyber threats. Among 

recent advancements in cloud-native security, [48] propose an integrated framework that combines real-

time multi-class threat detection with adaptive deception mechanisms tailored for Kubernetes environments. 

This approach is particularly significant due to Kubernetes’ increasing adoption in cloud infrastructures and 

its exposure to dynamic and complex threats such as privilege escalation, reconnaissance, and DoS attacks. 

The authors address key limitations found in traditional intrusion detection systems, such as high false 

positive rates and poor adaptability to evolving attack patterns. Their framework leverages machine learning 

models hosted on KServe, feature extraction via CICFlowMeter, and dynamic decoy deployment using 

KubeDeceive, all orchestrated through the MAPE-K feedback loop for continuous adaptation. Notably, 

their model achieves 91% detection accuracy and a decoy success rate of up to 93%, validating its 

robustness and real-time capabilities. 
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3. Data Collection, Aggregation, and Dissemination Challenges in Anomaly-NIDs 

Effectiveness of anomaly based Network intrusion detection (NIDS) is affected obviously  by data 

collection , aggregation and dissemination in order to identify unusual pattern. 

 

3.1 Data Collection Challenges: 

 Volume and Velocity of Network Traffic: Losing critical data is a big challenge facing the data 

collection flood managment for real time detection system (NIDS).  

 Data Quality and Preprocessing: Network data often contains noise and irrelevant packets, requiring 

precise preprocessing techniques to enhance data integrity. 

 Proper preprocessing is crucial for accurate anomaly detection. Anomaly detection is under the 

management of proper preprocessing data. 

 Imbalanced Datasets: When a dataset is balanced, the number of positive and negative labels is 

about equivalent. However, when unusual activities are uncommon or rare compared to normal traffic, the 

data is biased toward normal traffic or patterns, thus reducing its sensitivity to anomalies.   

3.2 Data Aggregation Challenges: 

 Preserving Anomaly Signatures: subtle anomalies are obscured making them difficult to detect by 

aggregating data and it's crucial to ensure that aggregation methods keep the integrity of anomaly signatures 

for detection efficiency.  

 Real-Time Processing: Well-timed detection of anomalies is crucial.  

 Aggregation processes must be optimized not to introduce significant delays, which could delay 

prompt responses to potential threats 

 Scalability: As networks grow, the amount of data to be aggregated increases, requiring scalable 

aggregation techniques that can deal with massive datasets without compromising performance.. 

 Timely Distribution of Alerts: Prompting alerts to relevant teams is crucial once an anomaly is 

detected because delays may cause slower response threats. 

 Security of Dissemination Channels: Security teams must secure the channels they use to 

disseminate detection results and alerts to prevent interception or tampering by malicious actors. They must 

prioritize maintaining the confidentiality and integrity of these channels. 

 Information Overload: Unnecessary alerts. Security teams are overwhelmed by false positives, 

leading to alert fatigue. Distribution strategies should filter and prioritize alerts to guarantee that critical 

threats receive appropriate attention. Development of advanced data handling techniques are a must for 

handling these challenges, such as robust preprocessing methods, scalable aggregation algorithms, secure 

and efficient dissemination protocols to improve the efficiency of anomaly-based (NIDs). 

 

4. Summary of the papers 

Here in this section the table will give a review and summary about the cyber-attacks detection in variant 

methods which used artificial intelligence techniques listed in table 1. 
 

Table 1: Summary of used algorithms and deployed accuracies of survey researches 

 
Ref. Name Type of IDS Algorithm Primary challenges 

addressed 

Datasets Accuracy Year 

[1] An Efficient CNN-Based Intrusion 

Detection System for IoT: Use Case 

Towards Cyber Security 

Anomaly-Based CNN Accuracy 

improvement in 

IoT,Reducing false 

positives 

BoT - IoT 98.2% 2024 

[2] Big Data-Driven Deep Learning 

Ensembler for DDoS Attack Detection 

Anomaly-Based SVM, ANN-GWO, 

GRU-RNN, CNN, 

LSTM, and DBN 

Improving 

detection in 

DDoS,Handling big 

IoT-23 , APA-

DDoS 

99.05% 2024 

file:///E:/3Benha%20Master%20courses/1%20_%20Hossam%20BNE/Hussam_%20JOCC_survey_final.docx%23references
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data, Real-time 

detection 

[3] Multiple Kernel Transfer Learning for 

Enhancing Network Intrusion 

Detection in Encrypted and 

Heterogeneous Network Environments 

. 

Anomaly-Based Transfer learning Encrypted & 

heterogeneous 

data,Transfer 

learning 

CIC-IDS-2017, 

CSE-CIC-IDS-

2018 

90% 2024 

[4] End-to-End Network Intrusion 

Detection Based on Contrastive 

Learning . 

Anomaly-Based CNN and GRU Feature 

extraction,Improvin

g accuracy 

CIC-

IDS2017,cSE-

CIC-IDS2018 

99% 2024 

[5] A Comparative Analysis of the 

TDCGAN Model for Data Balancing 

and Intrusion Detection 

Anomaly-Based TDC(traffic data 

conditional)Generat

ive Adversarial 

Network (GAN), 

DT, RF 

Data 

imbalance,GAN for 

balancing 

CIC-IDS 2017, 

CSE-CIC- IDS 

2018, KDD-

Cup 99, BOT-

IOT 

85%, 

88% 

2024 

[6] Rapid Forecasting of Cyber Events 

Using Machine Learning-Enabled 

Features 

Anomaly-Based SVM , RF, Naïve 

bayes , time series 

Time-sensitive 

detection,Early 

warning system 

CSE-CIC-

IDS2018 

99.2% 2024 

[7] Improvement of Distributed Denial of 

Service Attack Detection through 

Machine Learning and Data Processing 

Anomaly-Based RF,DT,ADA 

(AdaBoost ),XGB 

(Extreme Gradient 

Boosting) 

DDoS 

mitigation,Reducin

g false alarms 

CICDDoS2019 RF: 99.97% 2024 

[8] Enhancing Intrusion Detection Systems 

Using a Deep Learning and Data 

Augmentation Approach 

Anomaly-Based CNN Data 

scarcity,Improved 

DL accuracy 

UNSW-NB15, 

CIC-IDS-2017, 

5G-NIDD, 

FLNET2023 

91% 2024 

[9] Towards an Intelligent Intrusion 

Detection System to Detect Malicious 

Activities in Cloud Computing 

Anomaly-Based Radial Basis 

Function Neural 

Network (RBFNN) 

,RF 

Malicious activity 

detection,Cloud 

security 

Bot-IoT, NSL-

KDD 

92% 2023 

[10] Using Machine Learning Multiclass 

Classification Technique to Detect IoT 

Attacks in Real Time. 

Anomaly-Based OneVsRest , 

SMOTE 

Real-time 

detection,Imbalanc

ed data handling 

IoT-23 98.89% 2024 

[11] Towards Near-Real-Time Intrusion 

Detection for IoT Devices using 

Supervised Learning and Apache Spark 

Anomaly-Based DT,RF Big data 

processing,Real-

time capabilities 

SYN-DOS >99% 2020 

[12] Ensemble-Based Deep Learning 

Models for Enhancing IoT Intrusion 

Detection 

Anomaly-Based CNN,LSTM,GRU Combining DL 

models,High 

detection rate 

KDD’99 99.7% 2023 

[13] Intrusion Detection System Using 

Feature Extraction with Machine 

Learning Algorithms in IoT 

Anomaly-Based VGG-16, 

DenseNet,RF,KNN

,SVM 

Efficient feature 

use,IoT threat 

detection 

IEEE Dataport 98% 2023 

[14] Deep Learning Approach for SDN-

Enabled Intrusion Detection System in 

IoT Networks 

Anomaly-Based LSTM.SVM,CNN IoT-SDN 

integration,Deep 

learning benefits 

SDNIoT-

focused 

97% 2023 

[15] An Intrusion Detection System Using 

BoT-IoT 

Anomaly-Based ensemble bag ,DT Dataset-specific 

optimization, 

Bot-IoT 100% 2023 

[16] Deep Learning-Based Malicious Smart 

Contract and Intrusion Detection 

System for IoT Environment 

Anomaly-Based LSTM,GRU, Blockchain/IoT 

security,Malicious 

behavior 

NSL-KDD 99.12% 2023 

[17] Realguard: A Lightweight Network 

Intrusion Detection System for IoT 

Gateways 

 

Anomaly-Based DNN Lightweight,IoT 

gateways 

UNSW-NB15 99.5% 2022 

[18] A Particle Swarm Optimization and 

Deep Learning Approach for Intrusion 

Detection System in Internet of 

Medical Things 

Anomaly-Based PSO,LSTM,CNN Medical 

IoT,Optimization 

Combined 

Network 

Traffic and 

Patient Sensing 

Data 

96% 2022 

[19] Performance Investigation of Principal 

Component Analysis for Intrusion 

Detection System Using Different 

Support Vector Machine Kernels 

Anomaly-Based SVM Dimensionality 

reduction,Kernel 

performance 

KDD Cup’99 , 

UNSW-NB15 

99.11%, 93.94% 2022 

[20] Evaluation and Selection Models for 

Ensemble Intrusion Detection Systems 

in IoT 

Anomaly-Based Binary and Multi-

classification 

Model 

comparison,Selecti

on framework 

UNSW-NB15, 

Aposemat IoT-

23, ToN_IoT 

99.45%, 

97.81% 

2022 
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[21] A Composite Approach of Intrusion 

Detection Systems: Hybrid RNN and 

Correlation-Based Feature 

Optimization 

Anomaly-Based LSTM,GRU Handling 

imbalanced 

datasets,Improved 

detection accuracy 

CICIDS 

2017 

99.13% 2022 

[22] A Deep Learning Model for Network 

Intrusion Detection with Imbalanced 

Data 

Anomaly-Based LSTM,CNN Cyber threat 

detection,IoT focus 

NSL-KDD 90.73% 2022 

[23] IMIDS: An Intelligent Intrusion 

Detection System against Cyber 

Threats in IoT 

Anomaly-Based CNN Smart factory 

protection,Edge 

computing 

integration 

UNSW-NB15, 

CICIDS2017 

96.6%,95.9% 2022 

[24] IIoT Malware Detection Using Edge 

Computing and Deep Learning for 

Cyber security in Smart Factories 

Anomaly-Based Edge computing , 

CNN 

Zero-day 

attacks,Streaming 

data processing 

Malimg 98.93% 2022 

[25] Zero-Day Attack Detection Analysis in 

Streaming Data Using Supervised 

Learning Techniques 

Anomaly-Based RF,RT,Naïve bayes 

, Hoeffding tree 

Alert 

fatigue,Efficiency 

in alert systems 

CICIDS 99.97% 2022 

[26] DualAC2NN: Revisiting and 

Alleviating Alert Fatigue from the 

Detection Perspective 

Review Paper 

(Anomaly-

Based focus) 

CNN Reviewing models 

for botnet 

detection,IoT attack 

classification 

real-world 

HTTP traffic 

97.89% 2022 

[27] Deep Learning-Based Intrusion 

Detection System for Detecting IoT 

Botnet Attacks: A Review 

Anomaly-Based RNN,SNN,MLP,K

NN, 

CNN, 

LSTM 

Collaborative 

detection,IoT-

specific 

NSL-KDD, 

BoT-IoT, CIC-

IDS2017 ,CSE-

CIC-IDS2018 

87%, 99.95%, 

91.27%, 99.96% 

2025 

[28] CoLL-IoT: A Collaborative Intruder 

Detection System for Internet of 

Things Devices 

Review CoLL-IoT APTs 

overview,Future 

research direction 

UNSW-NB15 98% 2021 

[29] A New Proposal on the Advanced 

Persistent Threat: A Survey 

Anomaly-Based SVM, k-NN , DT Comparing ML 

classifiers,Cyber 

intrusion detection 

No Dataset 

applied 

 2020 

[30] IntruDTree: A Machine Learning 

Based Cyber Security Intrusion 

Detection Model 

Review NB,LR, KNN,SVM Accuracy 

benchmarking,Tech

nique comparison 

KDD’99  2022 

[31] Performance Comparison and Current 

Challenges of using Machine Learning 

Techniques in Cyber Security 

Review NB, RF, DT, SVM, 

DBN, ANN 

Insider threat 

models,Open 

challenges 

KDD Cup 99, 

Enron, 

Spambase 

The  greatest 

accuracy is: DT 

for IDS: 99.96%, 

2020 

[32] A Review of Insider Threat Detection: 

Classification, Machine Learning 

Techniques, Datasets, Open 

Challenges, and Recommendations 

Review LSTM , GRU Systematic 

review,Deep 

learning in anomaly 

detection 

RTU (Remote 

terminal unit ), 

NSLKDD/KDD

-99, Schonlau, 

APEX’ 07, 

RUU, TWOS 

 2020 

[33] Anomaly-Based Intrusion Detection 

Systems in IoT Using Deep Learning: 

A Systematic Literature Review 

 

Anomaly-Based AE ,CNN Fog 

environments,Reso

urce efficiency 

Mirai-RGU, 

Yahoo 

Webscope S5, 

KDDUP99 

99.99%,99.62%,9

9.78% 

2020 

[34] A Lightweight Perceptron-Based 

Intrusion Detection System for Fog 

Computing 

Anomaly-Based MLP Unsupervised 

learning,Deep 

belief networks 

ADFA 94%linux 

74% Win. 

2019 

[35] Building an Effective Intrusion 

Detection System Using the Modified 

Density Peak Clustering Algorithm and 

Deep Belief Networks 

Anomaly-Based MDPCA (modified 

density peak 

clustering 

algorithm ), DBN 

Big data 

processing,Compari

son study 

NSL-KDD, 

UNSW-NB15 

97.5% 2019 

[36] Comparative Study between Big Data 

Analysis Techniques in Intrusion 

Detection 

Anomaly-Based DT DoS detection,IoT 

and ICN focus 

MAWILab 99.95% 2018 

[37] Detection of DoS Attacks for IoT in 

Information-Centric Networks Using 

Machine Learning: Opportunities, 

Challenges, and Future Research 

Directions 

Signature-Based NN, DT,  clustering 

algorithms, J48,  

XGBoost, (DNNs), 

MLP-BP, RBF-PSO, 

RBF-JAYA 

Fuzzy  clustering, 

Enhanced accuracy 

 ndnSIM  2024 

[38] Signature-based intrusion detection 

using machine learning and deep 

learning approaches empowered with 

fuzzy clustering 

Anomaly-Based RF, KNN,DT, 

SVM,LSTM,ANN 

Web threats,Real-

time detection 

NSL-KDD RF: 99.50% 2025 
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[39] 

 

AI-IDS: Application of deep learning 

to real-time web intrusion detection 

 

Hybrid 

 

CNN,LSTM 

 

Combining RNN 

and SVM,High 

accuracy 

 

CSIC-2010, 

CICIDS2017 

 

91-93% 

 

2020 

[40] HDLNIDS: Hybrid Deep-Learning-

Based Network Intrusion Detection 

System 

Hybrid RNN,SVM Cloud 

deployment,Model 

fusion 

CICIDS-2018 98.90% 2023 

[41] Intrusion Detection on AWS Cloud 

through Hybrid Deep Learning 

Algorithm 

Anomaly-Based LSTM,RF Feature 

selection,Optimizat

ion techniques 

CSE-CIC-IDS-

2018 

95.3% 2023 

[42] A Novel Anomaly-Based Intrusion 

Detection Model Using PSOGWO-

Optimized BP Neural Network GA-

Based Feature Selection 

Anomaly-Based PSO – Grey Wolf 

Optimizer 

Evaluation 

metrics,Performanc

e measurement 

NSL-KDD 94.2% 2022 

[43] EM-AUC: A Novel Algorithm for 

Evaluating Anomaly Based Network 

Intrusion Detection systems 

Anomaly-Based evaluation metrics 

for anomaly-based 

NIDS 

Feature selection 

methods,High 

accuracy 

NSL-KDD, 

UNSW-NB15 

 2025 

[44] Anomaly Detection IDS for Detecting 

DoS Attacks in IoT Networks Based on 

Machine Learning Algorithms 

Comparative DT,KNN, RF, 

SVM, feature 

selection, 

Correlation-based 

Feature Selection, 

GA 

Comparing ML & 

DL,Performance 

benchmarking 

IoTID20 Without FS: 

99.94%, 99.95%, 

99.71%, 99.81% 

With GA: 100%, 

100%,88.29%,99.

90%  

2024 

[45] Deep Learning vs. Machine Learning 

for Intrusion Detection in Computer 

Networks: A Comparative Study 

Anomaly-Based MLP,CNN, 

LSTM, 

Logistic regression, 

NB,RF,DT,KNN 

Incident response, 

Cloud security 

cicids2017 98%, 99.9% 

 

2025 

[46] AI-Enabled System for Efficient and 

Effective Cyber Incident Detection and 

Response in Cloud Environments 

Anomaly-Based Random Forest, 

Isolation Forest, 

Neural Networks 

Cloud & federated 

learning, Model 

diversity 

NSL-KDD, 

UNSW-NB15, 

CIC-IDS-2017, 

Malware 

dataset 

96% 2024 

[47] AI-Powered Intrusion Detection 

Systems for Next-Generation Cloud 

Security 

Anomaly-Based CNN, LSTM, DT, 

SVM, RF, 

Federated Learning 

Kubernetes 

integration, 

Adaptive deception 

NSL-KDD, 

CICIDS2017, 

UNSW-NB15 

CNN: 98.5%,   

LSTM: 97.8%, 

(RF): 94.6%, 

(SVM): 92.8%, 

(DT): 91.3% 

2025 

[48] Real-time Multi-class Threat Detection 

and Adaptive Deception in Kubernetes 

Environments 

Anomaly-Based PCA + Auto 

encoders for multi-

class classification 

Improved Accuracy 

in IoT, Reducing 

false positives 

 91% - detection 

93% - decoy 

success rate 

2025 

 

5. Action Plan 

Table 2: Summary of used Algorithms and Applied Procedures 

 
Ref. Name algorithm Implemented actions 

[1] An Efficient CNN-

Based Intrusion 

Detection System for 

IoT 

CNN automatically extract 

spatial features from IoT 

traffic. 

[2] Big Data-Driven 

Deep Learning 

Ensembler for DDoS 

SVM, ANN-

GWO, GRU-

RNN, CNN, 

LSTM, and DBN 

Combined multiple DL 

models (CNN, LSTM, 

GRU, DBN) with ML 

(SVM, ANN-GWO) for 

ensemble accuracy 

[3] Multiple Kernel 

Transfer Learning 

for Enhancing NIDS 

Transfer learning Applied transfer learning 

to improve model 

generalization on 

encrypted and 

heterogeneous data 

[4] End-to-End Network 

IDS Based on 

Contrastive Learning 

CNN and GRU Used contrastive learning 

with CNN and GRU to 

learn better feature 

representations 

[5] TDCGAN Model for 

Data Balancing and 

IDS 

TDC(traffic data 

conditional) 

(GAN), DT, RF 

Used GANs (TDCGAN) 

for balancing datasets 

before training classifiers 

[6] Rapid Forecasting of 

Cyber Events Using 

ML 

SVM , RF, Naïve 

bayes , time 

series 

Combined time series and 

classic ML models (SVM, 

RF, Naive Bayes) for early 

warning 

[7] DDoS Detection 

through ML & Data 

Processing 

RF,DT,ADA 

(AdaBoost ),XG

B (Extreme 

Gradient 

Boosting) 

Applied ensemble models 

(RF, DT, XGBoost, 

AdaBoost) for boosted 

detection 

[8] DL and Data 

Augmentation for 

IDS 

CNN Used CNN with data 

augmentation to improve 

training and robustness 

[9] Intelligent IDS for 

Cloud 

Radial Basis 

RBFNN) ,RF 

Used RF and RBFNN with 

optimized cloud-based 

IDS for malicious activity 

classification 
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[10] ML Multiclass for 

IoT Real-Time 

Detection 

OneVsRest , 

SMOTE 

Applied One-vs-Rest and 

SMOTE for multiclass 

classification and 

imbalance correction 

[11] Near-Real-Time IDS 

for IoT via Apache 

Spark 

DT,RF Used Apache Spark with 

DT and RF for scalable 

real-time detection 

[12] Ensemble DL 

Models for IoT IDS 

CNN,LSTM,GR

U 

Built ensemble using 

CNN, LSTM, GRU for 

stronger detection 

capability 

[13] Feature Extraction 

with ML in IoT 

VGG-16, 

DenseNet,RF,KN

N,SVM 

Utilized pretrained CNNs 

(VGG-16, DenseNet) with 

ML classification 

[14] SDN-Enabled IDS in 

IoT Networks 

LSTM.SVM, 

CNN 

Combined LSTM, CNN, 

SVM in an SDN-enabled 

framework 

[15] IDS Using BoT-IoT ensemble bag 

,DT 

Ensemble bagging with 

DT optimized on Bot-IoT  

[16] Malicious Smart 

Contract and IDS for 

IoT 

LSTM,GRU, LSTM and GRU models 

used to detect blockchain-

related threats 

[17] Realguard: 

Lightweight IDS for 

IoT Gateways 

DNN Used lightweight DNN 

architecture for resource-

constrained IoT 

[18] PSO + DL for IoMT 

IDS 

PSO,LSTM, 

CNN 

PSO used for parameter 

tuning of LSTM/CNN 

hybrid in IoMT 

[19] PCA for IDS Using 

SVM Kernels 

SVM Applied PCA to reduce 

feature dimensionality 

before using SVM with 

different kernels 

[20] Ensemble IDS in IoT Binary and 

Multi-

classification 

Used classification voting 

ensemble on multiple IoT 

datasets 

[21] Deep Learning 

Model for NIDS 

with Imbalanced 

Data 

LSTM,GRU Used LSTM and CNN 

with class weighting to 

handle imbalanced data 

[22] IMIDS: Intelligent 

IDS for IoT 

LSTM,CNN Utilized CNN on IoT-

specific datasets to 

enhance pattern learning 

[23] IIoT Malware 

Detection with Edge 

Computing 

CNN Implemented CNN with 

edge computing for low-

latency threat detection 

[25] DualAC2NN: Alert 

Fatigue Alleviation 

RF,RT, Naïve 

bayes , Hoeffding 

tree 

Used CNN with dual 

attention mechanisms to 

reduce redundant alerts 

[26] DL-Based IDS for 

IoT Botnet Attacks 

(Review) 

CNN Analyzed DL methods like 

RNN, CNN, and MLP on 

botnet detection 

[27] CoLL-IoT: 

Collaborative IDS 

for IoT 

RNN,SNN,ML

P,KNN, 

CNN, 

LSTM 

Introduced a collaborative 

lightweight architecture 

for IoT device security 

[29] IntruDTree: ML-

Based IDS 

SVM, k-NN , DT Compared classic ML 

algorithms (KNN, SVM, 

NB) on cyber intrusion 

tasks 

[30] ML Techniques in 

Cyber Security: 

Comparison 

NB,LR, 

KNN,SVM 

Benchmarked multiple ML 

algorithms like DT, RF, 

DBN on large datasets 

[31] Review of Insider 

Threat Detection 

NB, RF, DT, 

SVM, DBN, 

ANN 

Discussed RNNs and 

GRUs for sequential 

insider behavior detection 

[32] Anomaly-Based IDS 

in IoT Using DL 

LSTM , GRU Surveyed CNN and AE 

architectures across 

various datasets 

[33] Lightweight IDS for 

Fog Computing 

AE ,CNN Applied MLP tuned for 

fog node resource 

constraints 

[34] Modified Density 

Peak Clustering and 

DBN 

MLP Combined unsupervised 

clustering (MDPCA) with 

DBN for classification 

[35] Big Data Analysis 

for IDS 

MDPCA 

(modified density 

peak clustering 

algorithm ), DBN 

Used Decision Trees in big 

data environments for 

performance 

benchmarking 

[36] DoS Attack 

Detection in ICNs 

Using ML 

DT Used ensemble and 

optimization-based ML 

techniques for attack 

detection 

[37] Signature-Based IDS 

with ML & DL 

NN, DT,  

clustering 

algorithms, J48,  

MLP XGBoost, 

(DNNs), MLP-

BP, RBF-PSO,  

Combined RF, SVM, and 

DL with fuzzy clustering 

for enhanced signature 

match 

[38] AI-IDS: DL for 

Real-Time Web 

Intrusion Detection 

RF, KNN,DT, 

SVM,LSTM,AN

N 

Applied CNN and LSTM 

for web traffic analysis in 

real time 

[39] HDLNIDS: Hybrid 

Deep Learning IDS 

CNN,LSTM Integrated RNN with SVM 

in a hybrid IDS for 

performance boost 

[40] Intrusion Detection 

on AWS Cloud 

RNN,SVM Combined LSTM and RF 

deployed in cloud to detect 

real-time intrusions 

[41] PSOGWO + GA-

Based Anomaly IDS 

LSTM,RF Used PSOGWO for BP 

Neural Net optimization 

and GA  

[42] EM-AUC: 

Algorithm 

Evaluation for 

Anomaly-Based 

NIDS 

PSO – Grey Wolf 

Optimizer 

Introduced a new metric 

EM-AUC for evaluating 

IDS 

[43] Anomaly IDS for 

DoS in IoT 

anomaly-based 

NIDS 

Applied multiple feature 

selection methods with 

ML classifiers 

[44] DL vs ML for IDS: 

Comparative Study 

DT,KNN, RF, 

SVM, Feature 

Selection, GA 

Compared DL (CNN, 

LSTM) and ML (RF, DT, 

SVM) on IDS datasets 

[45] AI-Enabled System 

for Cyber Incident 

Detection in Cloud 

MLP,CNN, 

LSTM, 

NB,RF,DT,KN

N 

Used Isolation Forest and 

NN with feature selection 

for cloud threats 

[46] AI-Powered IDS for 

Next-Gen Cloud 

Security 

Random Forest, 

Isolation Forest, 

Neural Networks 

Combined CNN, LSTM, 

FL with traditional ML for 

scalable detection 

[47] Real-time Threat 

Detection in 

Kubernetes 

CNN, LSTM, 

DT, SVM, RF, 

Federated 

Learning 

Used PCA + Autoencoders 

for classifying and 

reacting to threats in 

containers 

[48] An Efficient CNN-

Based Intrusion 

Detection System for 

IoT 

PCA + 

Autoencoders for 

multi-class 

classification 

Used CNN to 

automatically extract 

spatial features from IoT 

traffic data 



Hussam Kotb et al.                                                               Journal of Computing and Communication Vol.4, No.2, PP. 13-31, 2025 

  

23 
 

6. Datasets used in the survey selected articles : 

The following table 2 lists all datasets used in our selected researches: 

 
TABLE 2: Datasets used in Systems Deployments 

 
Ref. Dataset Name Data Size Dataset Type Additional Details 

[51] UNSW-NB15 

 

2,540,044 records Network Intrusion 

Detection 

Contains nine types of attacks, including 

Fuzzers, Analysis, Backdoors, DoS, Exploits, 

Generic, Reconnaissance, Shellcode, and 

Worms. 

[52] IoT-23 IoT-23: 1,048,576 

records; APA-

DDoS: 151,201 

records 

IoT Malware and 

DDoS Detection 

IoT-23 consists of 20 malware captures and 3 

benign captures from IoT devices, while 

APA-DDoS focuses on network connection 

characteristics for DDoS detection. 

[53] CIC-IDS-2017 Not specified Intrusion Detection 

Evaluation 

Includes various attack scenarios such as 

DoS, DDoS, and Brute Force. 

[54] CSE-CIC-

IDS2018 

Not specified Intrusion Detection 

Evaluation 

Captures modern attack scenarios and benign 

traffic. 

[55] KDD Cup 1999 ~4 million 

instances 

Network Intrusion 

Detection 

Derived from DARPA 1998 dataset; widely 

used for intrusion detection research. 

[56] ADFA-LD Not specified Host-Based Intrusion 

Detection 

Includes Linux-based system call traces of 

normal and malicious activity. 

[57] CSE-CIC-

IDS2019 

Not specified Network Intrusion 

Detection 

Captures modern attack scenarios and benign 

traffic. 

[58] NSL-KDD ~148,517 records Network Intrusion 

Detection 

An improved version of KDD Cup 99 dataset 

with reduced redundancy. 

[59] CICDDoS2019 ~3 million records DDoS Attack 

Detection 

Includes common real-world DDoS attack 

scenarios. 

[60] 5G-NIDD ~2.2 GB (raw 

data) 

5G Network Intrusion 

Detection 

A dataset for testing intrusion detection in 5G 

networks. 

[61] FLNET2023 Not specified Network Intrusion 

Detection (Federated 

Learning) 

A benchmark dataset for intrusion detection 

in Federated Learning environments. 

[62] KDD99 ~4 million 

instances 

Network Intrusion 

Detection 

Same as KDD Cup 99; widely used for 

evaluating IDS models. 

[63] Australian 

Defence Force 

Academy 

(ADFA) IDS 

Datasets 

Not specified Host-Based Intrusion 

Detection 

Includes datasets for Linux and Windows 

system call-based intrusion detection. 

[64] CSIC-2010 ~61,000 HTTP 

requests 

Web Application 

Intrusion Detection 

Web traffic dataset with normal and attack 

requests, covering SQL injection, buffer 

overflow, XSS, and more. 

[65] Schonlau 50 user profiles, 

15,000 commands 

each 

Masquerade Detection UNIX command dataset for detecting 

masquerading attacks. 

[66] CERT Insider 

Threat Test 

Dataset 

~87.23 GB Insider Threat 

Detection 

Simulated dataset for detecting insider 

threats in enterprise environments. 



Journal of Computing and Communication Vol.4, No. 2, PP. 13-31, 2025 

24 
 

 

7. Limitations 

TABLE 3: Overview of IDS paper limitation 

 

Paper 

Ref. 

Title Scalability False Positives Interpretability 

[1] An Efficient CNN-

Based Intrusion 

Detection System for 

IoT 

CNNs are computationally 

intensive and not well-suited for 

resource-constrained IoT 

devices. Scalability to large or 

real-time deployments is not 

addressed. 

While the model aims 

to improve accuracy, 

there is no explicit 

evaluation or 

mitigation strategy for 

false positives 

The deep learning-based 

model operates as a black 

box, and no 

interpretability methods 

(e.g., SHAP, LIME) are 

discussed. 

[2] Big Data-Driven Deep 

Learning Ensembler 

for DDoS Attack 

Detection 

The ensemble model integrates 

multiple DL architectures for big 

data, but its real-time scalability 

and processing efficiency under 

high throughput is not 

demonstrated. 

False positive 

mitigation is claimed 

via ensemble learning, 

but detailed analysis or 

metrics are not 

provided. 

The model is complex, 

involving GRU, 

GhostNet, and PCA-LLP, 

making interpretability 

difficult. No explanation 

mechanisms are offered. 

[3] Multiple Kernel 

Transfer Learning for 

Enhancing Network 

Intrusion Detection 

DetMKTL requires training 

many kernel classifiers, which 

limits scalability. StoMKTL 

improves efficiency but still 

requires validation in large-scale 

settings. 

The effect of the model 

on false positives is not 

discussed, despite the 

emphasis on accuracy 

and domain adaptation. 

The transfer learning 

framework with multiple 

kernels is opaque, and no 

interpretability methods 

are included. 

[4] End-to-End Network 

Intrusion Detection 

Based on Contrastive 

Learning 

Processing raw PCAP data 

through CNN and GRU layers 

adds computational overhead. 

Scalability to real-time detection 

is not tested. 

The false positive rate 

is not detailed or 

compared to other 

models, despite 

reporting high 

accuracy. 

Contrastive learning and 

deep neural nets lack 

transparency. 

Interpretability is not 

addressed at all. 

[5] A Comparative 

Analysis of the 

TDCGAN Model for 

Data Balancing and 

Intrusion Detection 

GAN-based data balancing 

improves accuracy but adds 

training overhead. Its scalability 

in production settings remains 

unverified. 

The paper improved 

minority class 

detection, but no direct 

mitigation or 

measurement  for false 

positives is provided. 

GANs and ensembles are 

hard to interpret. The 

paper does not discuss 

any means to explain 

decisions. 

[6] Rapid Forecasting of 

Cyber Events Using 

Machine Learning-

Enabled Features 

The model is designed for time-

sensitive detection but does not 

discuss long-term scalability or 

streaming input processing. 

No specific evaluation 

of false positive rate or 

how the model reduces 

them. 

Used traditional ML 

models, which could be 

interpretable, but no tools 

or explanations are 

provided in the paper. 

[7] Improvement of DDoS 

Attack Detection 

through Machine 

Learning and Data 

Processing 

Boosting models like XGBoost 

are used, but the paper lacks 

analysis on scalability in large-

scale, high-traffic networks. 

False alarms are 

mentioned as a 

challenge, yet there's 

no quantitative 

comparison of FP 

reduction. 

The paper does not 

explore how predictions 

can be interpreted or 

understood by users or 

analysts. 

[8] Enhancing IDS Using 

Deep Learning and 

Data Augmentation 

Combining DL with data 

augmentation increases training 

complexity; real-time scalability 

is not evaluated. 

Improved detection 

accuracy is shown, but 

the effect on false 

positives is not 

explicitly analyzed. 

No efforts are made to 

explain how DL models 

make predictions, despite 

using complex 

architectures. 

[9] Towards an Intelligent 

IDS to Detect 

Malicious Activities in 

Cloud Computing 

Cloud infrastructure is 

addressed, but no benchmarking 

or distributed scalability tests are 

included. 

 

Mitigation strategies or 

analysis of FP are not 

included, despite 

mentioning malicious 

activity detection. 

Model explanations or 

interpretability are not 

considered in the design 

or evaluation. 
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[10] Using ML Multiclass 

Classification 

Technique to Detect 

IoT Attacks in Real 

Time 

Real-time classification is 

proposed, but there's no 

performance benchmark for 

large-scale IoT deployments. 

SMOTE is used for 

imbalance, which may 

affect FP rate, but no 

results or controls for 

FP are discussed. 

The use of One-vs-Rest 

classification is 

interpretable in theory, yet 

no explanation framework 

is applied. 

[11] Towards Near-Real-

Time Intrusion 

Detection for IoT 

Devices using 

Supervised Learning 

and Apache Spark 

Uses Apache Spark for 

distributed processing, which 

supports scalability, but lacks 

detailed benchmarks for IoT-

scale deployments. 

No quantitative 

analysis of false 

positives is presented. 

Traditional models like 

decision trees and random 

forests are used, but 

interpretability is not 

emphasized. 

[12] Ensemble-Based Deep 

Learning Models for 

Enhancing IoT 

Intrusion Detection 

Deep ensembles increase 

computational overhead; real-

time scalability not tested. 

False positives may be 

reduced through 

ensemble averaging, 

but not explicitly 

measured or compared. 

Combining LSTM, GRU, 

CNN makes the model a 

black box; interpretability 

is not addressed. 

[13] IDS Using Feature 

Extraction with ML 

Algorithms in IoT 

Applies feature extraction for 

efficiency, but the modelâ€™s 

ability to scale with streaming 

IoT data is not evaluated. 

Paper focuses on 

overall accuracy, with 

no specific metrics or 

discussion on false 

positives. 

Uses ML models like RF 

and KNN which can be 

interpretable, but no 

interpretability techniques 

are applied. 

[14] DL Approach for 

SDN-Enabled IDS in 

IoT Networks 

SDN adds control layer 

efficiency, but no stress testing 

or scale-out demonstration is 

provided. 

No specific effort to 

measure or reduce false 

positives is discussed. 

Uses CNN, 

LSTMâ€”complex models 

with no interpretability 

strategy or analysis. 

[15] An Intrusion Detection 

System Using BoT-

IoT 

Focused on BoT-IoT dataset 

performance; real-world 

scalability is not analyzed. 

High accuracy is 

achieved, but FP rates 

are not highlighted or 

contrasted. 

Model selection focuses 

on performance rather 

than explainability; 

interpretation not 

explored. 

[16] DL-Based Malicious 

Smart Contract and 

IDS for IoT 

Smart contract evaluation with 

DL adds computational burden; 

lacks deployment analysis. 

False positive 

mitigation is not 

analyzed despite 

claiming high 

accuracy. 

Uses LSTM and GRU, 

which are complex and 

hard to interpret; no 

explanation offered. 

[17] Realguard: A 

Lightweight NIDS for 

IoT Gateways 

Designed to be lightweight, yet 

lacks quantitative benchmarks 

across multiple IoT gateway 

types. 

Claims good detection 

but no discussion on 

FP impact or rates. 

Interpretability of DNNs 

used is not discussed, 

despite lightweight 

intention. 

[18] PSO and Deep 

Learning for IDS in 

Internet of Medical 

Things 

Medical IoT setups require high 

performance, but DL and PSO 

can be computationally 

intensive; scalability not 

demonstrated. 

The paper lacks 

detailed analysis of 

false positive rate 

reduction. 

No model explanation 

methods used; DL + PSO 

systems are hard to 

interpret. 

[19] PCA for IDS Using 

Different SVM 

Kernels 

PCA reduces dimensionality, 

supporting scalability; kernel 

selection may affect 

performance on larger datasets. 

FP rates are not 

analyzed individually 

for each kernel. 

SVMs can be moderately 

interpretable, but kernel 

decisions are not clarified 

or visualized. 

[20] Evaluation and 

Selection Models for 

Ensemble IDS in IoT 

Focuses on evaluation criteria 

but does not benchmark real-

time performance or resource 

efficiency. 

No comparative false 

positive rate analysis 

across evaluated 

models. 

Model selection is 

emphasized, but 

interpretability trade-offs 

are not discussed. 
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[21] Composite IDS: 

Hybrid RNN + 

Feature Optimization 

Hybrid models increase 

complexity; large-scale 

applicability not validated. 

FP reduction is implied 

through feature 

optimization, but not 

separately measured. 

RNNs are black-box 

models; no explainability 

framework is used. 

[22] DL Model for NIDS 

with Imbalanced Data 

DL approach focuses on class 

imbalance but doesnâ€™t assess 

scalability in data-rich 

environments. 

FP rate affected by 

imbalance but not 

directly quantified in 

results. 

DL model not interpreted; 

focus is on metrics, not 

model reasoning. 

[23] IMIDS: Intelligent 

IDS for IoT 

Designed for IoT, but lacks tests 

across varied edge devices or 

network scales. 

High accuracy is noted, 

but FP metrics are not 

detailed. 

No model transparency 

features discussed; CNN-

based system lacks 

interpretability tools. 

[24] IIoT Malware 

Detection via Edge 

Computing + DL 

Edge computing improves 

response time, but scalability 

across factory environments not 

benchmarked. 

FP issues in malware 

detection are not 

addressed in the 

analysis. 

Uses CNNs; deep model 

decisions are not 

explained. 

[25] Zero-Day Attack 

Detection with 

Supervised Learning 

(Springer) 

Zero-day detection in streaming 

is discussed, but system 

scalability under load is not 

empirically tested. 

Claims low FP rate but 

lacks multi-dataset 

validation or specific 

breakdowns. 

Interpretability of alerts in 

streaming contexts is not 

analyzed. 

[26] DualAC2NN: 

Revisiting and 

Alleviating Alert 

Fatigue 

Paper focuses on reducing alert 

fatigue, but scalability to large 

enterprise environments isn't 

tested. 

Addresses false 

positive overload by 

neural architecture 

tuning; lacks rigorous 

cross-dataset testing. 

DL-based, interpretability 

is not part of the 

approach; black-box 

limitations acknowledged 

indirectly. 

[27] DL-Based IDS for IoT 

Botnet Attacks: A 

Review 

Being a review, it cites models 

with both scalable and non-

scalable traits but doesnâ€™t 

evaluate them experimentally. 

Highlights that many 

models still suffer high 

FP rates; emphasizes 

the need for better 

evaluation. 

Concludes that most DL 

models are opaque; 

stresses the lack of 

interpretable methods as a 

key gap. 

[28] CoLL-IoT: 

Collaborative IDS for 

IoT 

Collaborative nature helps 

scalability, but resource 

constraints in low-power IoT 

environments remain a concern. 

The paper mentions 

reducing FP via 

collaboration, but does 

not provide 

comparative FP 

metrics. 

No interpretability 

technique is applied or 

discussed despite layered 

architecture. 

[29] Advanced Persistent 

Threat: A Survey 

Focuses on APT detection 

methods conceptually, does not 

include implementation or 

scalability discussion. 

Survey identifies that 

false positives in APT 

detection remain 

unresolved. 

Notes that APT detection 

requires better 

interpretability but lacks 

model-level analysis. 

[30] IntruDTree: ML-

Based Cybersecurity 

Intrusion Detection 

Tree-based models scale 

moderately well, but high-

volume network traffic testing  

Claims low false 

positive rates, but does 

not benchmark against 

known IDS datasets. 

Decision tree architecture 

is inherently interpretable; 

no enhanced or visualize 

explanations. 

[31] ML Techniques in 

Cybersecurity: Current 

Challenges 

Compares scalability of ML 

methods; points out training time 

and resource bottlenecks. 

Highlights that FP rates 

are still a major 

concern in real-time 

use. 

Lack of transparency in 

DL models is a key 

challenge discussed 

throughout. 

[32] Review of Insider 

Threat Detection 

Survey notes scalability issues 

for enterprise insider threat 

models due to large data variety. 

Insider threat models 

suffer high FP due to 

subtle behavior 

anomalies. 

Paper notes that limited 

model transparency 

hampers adoption in 

organizations. 

[33] Anomaly-Based IDS 

in IoT Using DL: SLR 

Finds that most DL-based IDS 

for IoT lack lightweight 

scalability features. 

Discusses FP as a 

persistent challenge 

with anomaly-based 

detection. 

Interpretability is 

highlighted as a major 

research gap in surveyed 

models. 
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[34] Lightweight 

Perceptron-Based IDS 

for Fog Computing 

Designed for fog environments, 

it claims lightweight scalability 

but does not test large-scale 

deployments. 

Claims acceptable FP 

rates, but lacks 

comparative 

benchmarks with 

existing methods. 

Uses simple perceptron 

model, which is more 

interpretable, though not 

deeply discussed. 

[35] IDS with Density Peak 

Clustering and DBN 

Scalability limited by deep belief 

network training complexity and 

clustering overhead. 

Mitigates false 

positives with 

clustering, but real-

world validation is 

missing. 

Deep Belief Networks are 

black-box models, and no 

explainability method is 

used. 

[36] Big Data Analysis 

Techniques in IDS 

Analyzes big data tools, 

highlighting scalability of 

techniques like Spark, but no 

experimental proof. 

Describes comparative 

FP rates but without 

unified evaluation 

framework. 

Interpretability is noted as 

lacking in most big data 

IDS pipelines surveyed. 

[37] Detection of DoS 

Attacks in ICN Using 

ML 

Scalability challenges due to 

evolving ICN architectures and 

dataset limitations are 

highlighted. 

Mentions FP issue in 

ICN due to content-

level attacks, proposes 

use of hybrid models. 

Interpretability is briefly 

discussed as a future 

direction, but not 

implemented. 

[38] Signature-Based IDS 

Using ML/DL + 

Fuzzy Clustering 

Scalability is moderate; fuzzy 

clustering introduces 

computational burden for large 

traffic volumes. 

Addresses FP using 

clustering refinement; 

needs cross-validation 

on diverse datasets. 

Fuzzy logic helps 

interpret decision 

boundaries but DL 

components remain 

opaque. 

[39] AI-IDS for Real-Time 

Web Intrusion 

Detection 

Real-time processing is targeted, 

but scalability under heavy 

concurrent traffic is not tested. 

FP mitigation is 

discussed via fine-

tuning DL model; lacks 

adversarial robustness 

checks. 

Relies on deep learning 

with no interpretability or 

explainability module 

applied. 

[40] HDLNIDS: Hybrid 

Deep Learning-Based 

NIDS 

Hybrid modelâ scalability is 

unclear; ensemble layers 

increase resource demands. 

Claims reduced FP 

through hybridization, 

but experimental 

justification is brief. 

Interpretability is not 

addressed; focus is on 

accuracy and hybrid 

design only. 

[41] Intrusion Detection on 

AWS Cloud Using 

Hybrid DL 

Scalability for AWS is discussed 

but lacks testing on high-

throughput multi-region 

environments. 

Uses hybrid model to 

reduce FPs, but lacks 

quantitative 

comparison with 

benchmarks. 

Hybrid deep learning 

model is complex; lacks 

interpretability techniques 

like SHAP or LIME. 

[42] Anomaly IDS Using 

PSOGWO-BP and GA 

Feature Selection 

Heuristic and hybrid models 

increase complexity; real-time 

large dataset tests are absent. 

Claims optimization 

improves FP reduction, 

but robustness to new 

attack types is unclear. 

BP neural network lacks 

explaining model 

behavior isn't 

interpretable by design. 

[43] EM-AUC Algorithm 

for Evaluating 

Anomaly-Based NIDS 

Focuses on evaluation metric, 

not deployment scalability. 

Proposes new metric to 

evaluate FP impact 

better, improving 

model tuning. 

Indirectly supports 

interpretability through 

evaluation insight but no 

model-specific tools used. 

[44] Anomaly Detection 

IDS for DoS in IoT 

Networks 

Moderate scalability on IoT 

datasets, but not tested in real-

time edge environments. 

Claims balanced 

accuracy, but false 

positive rate not 

directly addressed in 

detail. 

Model interpretability not 

covered; focus is on 

detection accuracy. 
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[45] DL vs ML for 

Intrusion Detection: A 

Comparative Study 

Highlights DL scalability issues 

on resource-constrained devices. 

Compares FP trends 

across ML and DL but 

lacks generalization 

beyond benchmark 

datasets. 

Notes DL is less 

interpretable, advocating 

for interpretable ML 

models where feasible. 

[46] AI-Enabled Cyber 

Incident Detection in 

Cloud (arXiv) 

Scalability in cloud workloads is 

discussed theoretically; lacks 

live deployment validation. 

Mentions the use of 

ensemble techniques to 

reduce FP but lacks 

statistical validation. 

No discussion of how 

results are interpreted or 

explained to users. 

[47] AI-Powered IDS for 

Next-Gen Cloud 

Security 

Promotes AI scalability in cloud 

but lacks benchmarking under 

real-world scale. 

Mentions threat 

adaptation to reduce 

FP, yet quantitative FP 

rates are not provided. 

Emphasizes automation 

and adaptation, but little 

on interpretability or 

transparency. 

[48] Real-Time Multi-

Class Threat Detection 

in Kubernetes 

Demonstrates real-time detection 

in Kubernetes, but latency 

benchmarks are brief. 

Adaptive deception 

techniques proposed to 

minimize FP; lacks 

comparison to other 

frameworks. 

Interpretability not a 

focus; model decisions are 

treated as opaque. 

 

 

TABLE 4: IDS Taxonomy summary 

 

Category Class No. of Papers 

Detection Type Signature-Based 3 

Detection Type Anomaly-Based 30 

Detection Type Hybrid 15 

ML Method Traditional ML 12 

ML Method Deep Learning 20 

ML Method Hybrid/Ensemble Models 16 

Application Area IoT 22 

Application Area Cloud 14 

Application Area Edge/Fog/IIoT 9 

Research Focus Scalability 40 

Research Focus False Positive Reduction 35 

Research Focus Interpretability 33 

  

8. Conclusion 

Implementing an anomaly-based NIDS in real-time cloud environments offers significant advantages in 

detecting previously unknown attacks by identifying deviations from established standard behavior 

patterns. Techniques such as machine learning and deep learning have been instrumental in enhancing 

detection capabilities. For instance, the applications of deep learning methods have shown promise in 

improving intrusion detection performance within cloud computing contexts. However, challenges persist, 

including managing high volumes of data, reducing false positives, and ensuring timely detection without 

compromising system performance. 

 

 

Open Problems and Questions - The study "Real-time multi-class threat detection and adaptive 

deception in Kubernetes environments" where proposes an integrated framework that combines machine 
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learning-based multi-class threat detection with adaptive deception tailored for Kubernetes [48]. While the 

framework presents a novel and practical approach, several research gaps and opportunities for future work 

remain: 

 Lack of Integration with SIEM Platforms 

Integrating with siem is crucial for security teams as it monitors and responds to attacks or threats, so it 

is not effective to let the system work by itself without integration. 

 Absence of Automated Model Retraining 

New types of attacks are easy to appear as the model is trained once and relies on static configuration ( 

PCA and autoencoders), so it misses the zero-day attack advantage. It may be outdated if the model does 

not learn automatically.  

 Incomplete MAPE-K Implementation 

MAPE-K: It is a model used to create self-adaptive systems that can make decisions, monitor, and adjust 

automatically without human input, so incomplete implementation may affect the above characteristics. 

 Scalability and Resilience at the Production Scale 

Current evaluation is limited to controlled environments. There is insufficient evidence regarding the 

framework's performance under production-scale workloads, high-velocity traffic, or multi-tenant 

environments. Future research should assess latency, accuracy, and fault tolerance in enterprise settings. 

 Susceptibility to Decoy Evasion 

They use Decoys ( fake services to fool attackers ), but some attackers can gain access to them, so if that 

happens, the prevention or detection becomes useless. 

 Narrow Attack Scope and Dataset Diversity 

The detection model was evaluated using 10 crafted attack scenarios based on specific CVEs. This 

restricts generalizability. Broader evaluations using public, real-world datasets and additional threat vectors 

(e.g., insider attacks, data exfiltration) are necessary. 

 Lack of Multi-Cloud and Multi-Cluster Support 

The proposed system is currently limited to a single Kubernetes cluster. Extending the framework to 

support multi-cloud and federated Kubernetes environments would address real-world deployment needs 

in distributed cloud-native infrastructures. 
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