References
[1] Lukasz Augustyniak, Szymon Wo´zniak, Marcin Gruza, Piotr Gramacki, Krzysztof Rajda, Mikolaj Morzy, and Tomasz Kajdanowicz. Massively multilingual corpus of sentiment datasets and multi-faceted sentiment classification benchmark. Advances in Neural Information Processing Systems,36:38586–38610, 2023.
[2] Mohammad Azad, Tasnemul Nehal, and Mikhail Moshkov. A novel ensemble learning method using majority based voting of multiple selective decision trees. Computing, 107, 12 2024.
[3] Francesco Barbieri, Luis Espinosa Anke, and Jose Camacho-Collados. XLM-T: Multilingual language models in Twitter for sentiment analysis and beyond. In Proceedings of the Thirteenth Language Resources and Evaluation Conference, pages 258–266, Marseille, France, June 2022. European Language Resources Association.
[4] Eslam Ashraf Elhadidi, Ahmad Salah, Marwa Abdellah, and Saad M. Darwish. Sentiment analysis: a comparison of deep learning neural network algorithms with ensemble learning algorithms. Journal of Information Systems Engineering and Management, 10(34s), 2025.
[5] Fatema Tuj Johora Faria, Laith H. Baniata, Mohammad H. Baniata, Mohannad A. Khair, Ahmed Ibrahim Bani Ata, Chayut Bunterngchit, and Sangwoo Kang. Sentimentformer: A transformer-based multimodal fusion framework for enhanced sentiment analysis of memes in under-resourced bangla language. Electronics, 14(4), 2025.
[6] Fangxiaoyu Feng, Yinfei Yang, Daniel Cer, Naveen Arivazhagan, and Wei Wang. Language-agnostic bert sentence embedding. arXiv preprint arXiv:2007.01852, 2020.
[7] Tom´aˇs Filip, Martin Pavl´ıˇcek, and Petr Sos´ık. Fine-tuning multilingual language models in twitter/x sentiment analysis: a study on easter European v4 languages. arXiv preprint arXiv:2408.02044, 2024.
[8] Dhaou Ghoul, J´er´emy Patrix, Ga¨el Lejeune, and J´erˆome Verny. A combined arabert and voting ensemble classifier model for arabic sentiment analysis. Natural Language Processing Journal, 8:100100, 2024.
[9] Fatih Gurcan. Enhancing breast cancer prediction through stacking ensemble and deep learning integration. PeerJ Computer Science, 11:e2461, 2025.
[10] Md Arid Hasan. Ensemble language models for multilingual sentiment analysis. arXiv preprint arXiv:2403.06060, 2024.
[11] Mikael Moller Hogsgaard and Kasper Green Larsen. Improved margin generalization bounds for voting classifiers. ArXiv, abs/2502.16462, 2025.
[12] Md. Mamun Hossain, Md. Moazzem Hossain, Most. Binoee Arefin, Fahima Akhtar, and John Blake. Combining state-of-the-art pre-trained deep learning models: A noble approach for skin cancer detection using max voting ensemble. Diagnostics, 14(1), 2024.
[13] Rania Kora and Ammar Mohammed. An enhanced approach for sentiment analysis based on meta-ensemble deep learning. Social Network Analysis and Mining, 13(1):38, 2023.
[14] George Manias, Argyro Mavrogiorgou, Athanasios Kiourtis, Chrysostomos Symvoulidis, and Dimosthenis Kyriazis. Multilingual text categorization and sentiment analysis: a comparative analysis of the utilization of multilingual approaches for classifying twitter data. Neural Computing and Applications, 35(29):21415–21431, 2023.
[15] Domor Mienye and Yanxia Sun. A survey of ensemble learning: Concepts, algorithms, applications, and prospects. IEEE Access, PP:1–1, 09 2022.
[16] Shamsuddeen Hassan Muhammad, Idris Abdulmumin, Abinew Ali Ayele, Nedjma Ousidhoum, David Ifeoluwa Adelani, Seid Muhie Yimam, Ibrahim Sa’id Ahmad, Meriem Beloucif, Saif M Mohammad, Sebastian Ruder, et al. Afrisenti: A twitter sentiment analysis benchmark for African languages. arXiv preprint arXiv:2302.08956, 2023.
[17] Neelesh Mungoli. Adaptive ensemble learning: Boosting model performance through intelligent feature fusion in deep neural networks. arXiv preprint arXiv:2304.02653, 2023.
[18] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version of bert: smaller, faster, cheaper and lighter. ArXiv, abs/1910.01108, 2019.
[19] Pratinav Seth, Rashi Goel, Komal Mathur, and Swetha Vemulapalli. Rsm nlp at blp-2023 task 2: Bangla sentiment analysis using weighted and majority voted fine-tuned transformers. arXiv preprint arXiv:2310.14261,2023.
[20] Gaurish Thakkar, Sherzod Hakimov, and Marko Tadi´c. M2sa: multimodal and multilingual model for sentiment analysis of tweets. arXiv preprint arXiv:2404.01753, 2024.
[21] ang Thin, Dai Nguyen, Dang Qui, Duong Hao, and Ngan Nguyen. ABCD team at SemEval-2023 task 12: An ensemble transformer-based system forAfrican sentiment analysis. In Atul Kr. Ojha, A. Seza Do˘gru¨oz, Giovanni Da San Martino, Harish Tayyar Madabushi, Ritesh Kumar, and Elisa Sartori, editors, Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023), pages 324–330, Toronto, Canada, July 2023.Association for Computational Linguistics.
[22] Andhra University. Zero-shot multilingual sentiment analysis using transformer-based models. International Journal of Engineering Research and Development, 2025.
[23] Weikang Wang, Guanhua Chen, H. Wang, Yue Han, and Yun Chen. Multilingual sentence transformer as a multilingual word aligner. ArXiv, abs/2301.12140, 2023.
[24] Chengyan Wu, Bolei Ma, Zheyu Zhang, Ningyuan Deng, Yanqing He, and Yun Xue. Evaluating zero-shot multilingual aspect-based sentiment analysis with large language models. arXiv preprint arXiv:2412.12564, 2024.
[25] Wei Wu, Liang Tang, Zhongjie Zhao, and Chung-Piaw Teo. Enhancing binary classification: A new stacking method via leveraging computational geometry. arXiv preprint arXiv:2410.22722, 2024.
[26] Feihong Yang, Xuwen Wang, Hetong Ma, and Jiao Li. Transformers sklearn: a toolkit for medical language understanding with transformer based models. BMC Medical Informatics and Decision Making, 21:1–8, 2021.
[27] Jakub ˇSm´ıd and Pavel Kr´al. Cross-lingual aspect-based sentiment analysis: A survey on tasks, approaches, and challenges. Information Fusion, 120:103073, 2025.