 
								Document Type : Original Article
Authors
1 Department of Computer Science, Faculty of Computer and Artificial Intelligence, Damietta University, Egypt
2 Department of Information Technology, Faculty of Computer and Artificial Intelligence, Damietta University, Egypt
Abstract
Keywords
| 1.
 | Bagi, R., Yadav, J., Rao, K. (2015). Improved recognition rate of language identification system in noisy environment. In Eighth International Conference on Contemporary Computing (pp.214-219), Noida, India.
 | 
| 2.
 | Yu-bin, S., Jing, L., Hua, L., Yi-min, L. (2021). Language Identification in Real Noisy Environments. Journal of Beijing University of Posts and Telecommunications 44(6), 134.
 | 
| 3.
 | Kilimci, H., Kilinc, H., Kilimci, Z. (2025). Automatic Language Identification from Speech using Transformer-Based Models. In 7th International Congress on Human-Computer Interaction, Optimization and Robotic Applications (ICHORA) (pp.1-7).
 | 
| 4.
 | Barnard, E., Cole, R. (1994). Reviewing automatic language identiļ¬cation. IEEE Signal Processing Magazine 11(4), 33–41.
 | 
| 5.
 | O'Shaughnessy, D. (2025). Spoken language identification: An overview of past and present research trends. Speech Communication, 167.
 | 
| 6.
 | Rai, M., Fahad, M., Yadav, J., Rao, K. (2016). Language identification using PLDA based on i-vector in noisy environment. In 2016 International Conference on Advances in Computing, Communications and Informatics (ICACCI) (pp.1014-1020).
 | 
| 7.
 | Sáez, J., Luengo, J., Herrera, F. (2016). Evaluating the classifier behavior with noisy data considering performance and robustness: The equalized loss of accuracy measure. Neurocomputing, 176, 26-35.
 | 
| 8.
 | H, M., Gupta, S., Dinesh, D., Rajan, P. (2021). Noise-Robust Spoken Language Identification Using Language Relevance Factor Based Embedding. In IEEE Spoken Language Technology Workshop (SLT), Shenzhen, China, IEEE.
 | 
| 9.
 | Makhoul, J. (2005). Linear prediction: A tutorial review. In Proceedings of the IEEE (pp.561 - 580), vol. 63.
 | 
| 10.
 | Mermelstein, P. (1976). Distance measures for speech recognition, psychological and instrumental. Pattern Recognition and Artificial Intelligence, 374-388.
 | 
| 11.
 | Hermansky, H. (1990). Perceptual linear predictive (PLP) analysis of speech. The Journal of the Acoustical Society of America 87(4), 1738–1752.
 | 
| 12.
 | Eyben, F., Wöllmer, M., Schuller, B. (2010). OPENSMILE - The Munich Versatile and Fast Open-Source Audio Feature Extractor. In  Proceedings of the 9th ACM International Conference on Multimedia (pp.1459-1462).
 | 
| 13.
 | Singh, G., Sharma, S., Kumar, V., Kaur, M., MohammedBaz, Masud, M. (2021). Spoken Language Identification Using Deep Learning. Computational Intelligence and Neuroscience, 1–12.
 | 
| 14.
 | Fathoni, A., Hidayat, R., Bejo, A. (2022). Optimization of Feature Extraction in Indonesian Speech Recognition Using PCA and SVM Classification. In 5th International Seminar on Research of Information Technology and Intelligent Systems (ISRITI), Yogyakarta, Indonesia.
 | 
| 15.
 | Ramoji, S., Ganapathy, S. (2018). Supervised I-vector Modeling-Theory and Applications. INTERSPEECH, 1091-1095.
 | 
| 16.
 | Thimmaraja, Y., Nagaraja, B., Jayanna, H. (2021). Speech enhancement and encoding by combining SS-VAD and LPC. International Journal of Speech Technology, 24, 165–172.
 | 
| 17.
 | Nassif, A., Shahin, I., Hamsa, S., Nemmour, N., Hirose, K. (2021). CASA-based speaker identification using cascaded GMM-CNN classifier in noisy and emotional talking conditions. Applied Soft Computing, 103.
 | 
| 18.
 | Kantamaneni, S., Charles, A., Babu, T. (2023). Speech enhancement with noise estimation and filtration using deep learning models. Theoretical Computer Science, 941, 14-28.
 | 
| 19.
 | Biswas, M., Rahaman, S., Ahmadian, A., Subari, K., Singh, P. (2023). Automatic spoken language identification using MFCC based time series features. Multimedia Tools and Applications, 82, 9565–9595.
 | 
| 20.
 | Salamon, J., Bello, J. P. (2017). Deep Convolutional Neural Networks and Data Augmentation for Environmental Sound Classification. IEEE Signal Processing Letters, 24(3), 279-283.
 | 
| 21.
 | Luo, Y., Mesgarani, N. (2019). Conv-TasNet: Surpassing Ideal Time-Frequency Magnitude Masking for Speech Separation. IEEE/ACM Transactions on Audio Speech and Language Processing, 27(8), 1256-1266.
 | 
| 22.
 | audEERING. Available at: https://www.audeering.com/research/opensmile/.
 | 
| 23.
 | Jolliffe, I. (2002). Principal Component Analysis 2nd edn. Springer , New York.
 | 
| 24.
 | Fisher, R. (1936). The use of multiple measurements in taxonomic problems. Annals of Eugenics, 7(2), 179-188.
 | 
| 25.
 | Xanthopoulos, P., Pardalos, P. M., Trafalis, T. B. (2013). Linear Discriminant Analysis. In Robust Data Mining. Springer, New York.
 | 
| 26.
 | Olson, D., Delen, D. (2008). Advanced Data Mining Techniques 1st edn. Springer.
 | 
| 27.
 | Prahallad, K., Kumar, E., Keri, V., Rajendran, S., Black, A. IIIT-H Indic Speech Databases, IIIT Hyderabad, India. (Accessed 2024) Available at: http://festvox.org/databases/iiit_voices/.
 | 
| 28.
 | Gupta, M., Bharti, S., Agarwal, S. (2017). Implicit language identification system based on random forest and support vector machine for speech. In 4th International Conference on Power, Control & Embedded Systems (ICPCES), Allahabad, India.
 | 
| 29.
 | Athira, N., Poorna, S. (2019). Deep learning based language identification system from speech. In International Conference on Intelligent Computing and Control Systems (ICCS) (pp.1094-1097), Madurai, India.
 | 
| 30.
 | Mukherjee, H., Das, S., Dhar, A., Obaidullah, S., Santosh, K., Phadikar, S., Roy, K. (2020). An ensemble learning-based language identification system. In Computational Advancement in Communication Circuits and Systems: Proceedings of ICCACCS, 2018.
 | 
| 31.
 | Paul, B., Phadikar, S., Bera, S. (2021). Indian regional spoken language identification using deep learning approach. In Proceedings of the Sixth International Conference on Mathematics and Computing: ICMC 2020 (pp.263-274), Singapore.
 | 
| 32.
 | AMBILI, A., ROY, R. (2023). The Effect of Synthetic Voice Data Augmentation on Spoken Language Identification on Indian Languages. IEEE Access, 11, 102391 - 102407.
 |