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 Smart Access (SA) is a modern, contactless access control system powered by artificial 

intelligence, designed to provide secure entry for spaces like offices, hospitals, hotels, and 

research facilities. Unlike traditional systems that rely on keys, PIN codes, RFID cards, or costly 

biometric devices, SA takes a more efficient and user-friendly approach. It uses multimodal 

biometric verification directly from a user's smartphone, removing the need for additional 

hardware.The system combines both facial and voice recognition with advanced deepfake 

detection to enhance security. Facial authentication is built on the DeepFace framework with a 

VGG-Face model, enhanced by liveness detection to block spoofing attempts. Voice recognition 

includes speaker verification through SpeechBrain, transcript checking with Whisper ASR, and 

deepfake voice detection using a fine-tuned Wav2Vec2 model. These features work together to 

defend against threats like replay attacks and AI-generated audio impersonations. 

SA’s architecture includes a mobile or web client, a secure AI-powered backend, and an ESP32 

microcontroller that controls physical access. When a user's identity is successfully verified, a 

secure signal is sent to the ESP32 to unlock the door. Administrators can manage users, 

permissions, rooms, and access records through an intuitive dashboard that supports multiple 

organizations with strict data separation. Performance evaluations showed impressive results: 

97.4% accuracy in facial recognition, 94.6% in detecting fake audio, and an average verification 

time of just 2.4 seconds. In a user survey, over 90% of participants rated the system as more 

secure and convenient than traditional access methods. 
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1. Introduction 

The rising need for strong security solutions across diverse physical spaces—such as hospitals, research 

labs, office buildings, and hotels—has underscored the importance of scalable and dependable access 

control systems. Today’s systems must go beyond simply granting or denying entry. They should also 

prioritize user convenience, maintain hygiene, and adapt to increasingly complex cybersecurity threats. 

The COVID-19 pandemic played a major role in accelerating the shift toward contactless technology. It 

brought attention to the health risks posed by shared touchpoints and physical interfaces, making clean, 

touch-free access solutions not just desirable, but essential. Figure 1 provides an overview of how access 

control methods have evolved, highlighting key developments over time while pointing out the limitations 

of traditional approaches. 

Traditional methods like physical keys, RFID badges, PINs, and dedicated biometric scanners—are proving 

less effective in today’s environment. Physical credentials can be lost, stolen, or duplicated. PINs are easy 

targets for shoulder surfing, guessing, or brute-force attacks. While biometric devices offer better security, 

they often require expensive infrastructure and remain vulnerable to spoofing tactics such as photo 

impersonation, fake fingerprints, or synthetic voice recordings. In addition, most conventional systems 

aren’t equipped to recognize AI-generated content in real time, making them increasingly susceptible to 

deepfakes and cloned voices—threats that are rapidly advancing alongside modern AI capabilities. 

. 
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FIGURE 1. Evolution of Access Control Technologies 

Conventional access control mechanisms—such as mechanical keys, RFID cards, personal identification 

numbers (PINs), and standalone biometric devices—are increasingly falling short of contemporary security 

requirements. Physical tokens can be easily lost, stolen, or exploited, while PIN-based systems remain 

highly susceptible to observational attacks, brute-force attempts, and social engineering techniques. 

Although biometric systems offer enhanced security, they demand significant investment in dedicated 

infrastructure and are not immune to spoofing threats. These include facial impersonation via photographs, 

synthetic fingerprints, and cloned audio samples, all of which pose serious risks, particularly in the absence 

of real-time synthetic content detection capabilities. As a result, many existing biometric systems remain 

vulnerable to adversarial attacks driven by advances in artificial intelligence (AI), including deepfakes and 

voice synthesis technologies. 

 

Biometric authentication [1], which utilizes unique physiological or behavioral characteristics such as 

facial features and vocal patterns, has garnered considerable attention as a more secure alternative. 

However, the majority of current implementations are unimodal and lack robust anti-spoofing mechanisms 

[2], leaving them exposed to increasingly sophisticated forgeries. With the rapid evolution of AI in the 

domains of computer vision, speech recognition, and synthetic media detection, there exists a timely 

opportunity to develop intelligent, multimodal authentication systems that are not only more secure and 

scalable, but also more intuitive for users. 

 

This paper proposes Smart Access (SA) a mobile-centric, AI-enhanced biometric access control system 

designed to meet modern demands for security, hygiene, and usability in physical environments. SA 

leverages the user’s smartphone as the primary authentication interface, reducing reliance on shared 

touchpoints and offering a seamless user experience. The system integrates facial and voice recognition 

with advanced spoofing and deepfake detection technologies. Specifically, it employs the DeepFace 

framework with VGG-Face for facial recognition, augmented with liveness detection, alongside 

SpeechBrain for speaker verification, Whisper ASR for transcript validation, and a fine-tuned Wav2Vec2 
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model for synthetic voice identification. Upon successful multimodal verification, access commands are 

securely transmitted to an ESP32 microcontroller that governs physical entry mechanisms. 

 

In addition to its secure authentication pipeline, SA features a comprehensive administrative dashboard 

that facilitates real-time user and access management, audit logging, and policy enforcement. It supports 

multi-tenant environments with strict data isolation, ensuring scalability across diverse deployment 

scenarios. By addressing the limitations of traditional systems through an AI-driven, multimodal 

architecture, Smart Access presents a forward-looking solution that is well-suited to counter emerging 

threats while aligning with evolving ethical and operational considerations in secure access control.. 

2. Related Work 

The evolution of access control systems has seen a shift from traditional mechanisms—such as keycards 

and PIN codes—to biometric authentication, driven by the growing need for more secure and user-friendly 

solutions. Early biometric systems predominantly relied on fingerprint and iris recognition, offering high 

accuracy but necessitating specialized and often expensive hardware, which limited their scalability and 

deployment in everyday settings [3]. 

 

Facial recognition technologies, particularly those based on models like FaceNet, introduced a more 

accessible, contactless solution by leveraging smartphone cameras. These systems performed well under 

controlled conditions but were quickly found to be vulnerable to spoofing techniques, such as using printed 

photos. This prompted the integration of liveness detection strategies like motion analysis—to enhance 

resilience against such attacks [4][5]. However, these defenses are still limited when faced with deepfake-

based threats, which can produce synthetic faces nearly indistinguishable from authentic ones. 

 

Voice-based authentication has also emerged as an alternative biometric approach. Systems using Gaussian 

Mixture Model-Universal Background Model (GMM-UBM) architectures enabled speaker verification 

with reasonable accuracy [6]. Yet, these systems are increasingly challenged by advances in deepfake audio 

generation, which allow attackers to clone voices using AI. The development of deepfake detection models 

such as Wav2Vec2 has improved the ability to detect synthetic audio by identifying subtle acoustic 

discrepancies [7]. Despite this progress, unimodal voice systems often perform inconsistently in noisy 

environments and remain susceptible to evolving spoofing tactics. 

 

To enhance overall system robustness, researchers have explored multimodal biometric approaches that 

combine multiple traits—such as facial and voice features. Brunelli and Falavigna were among the first to 

demonstrate that fusing facial and voice data significantly improves identification accuracy and reduces 

vulnerability to spoofing [8]. However, many multimodal systems still overlook the risk posed by AI-

generated media, and their reliance on expensive hardware has impeded large-scale adoption. 

 

The widespread availability of deepfake tools has further emphasized the urgency of access control systems 

capable of detecting both traditional spoofing attempts and synthetic impersonations. Smart Access (SA) 

addresses these challenges by combining cost-effective smartphone-based biometrics with robust anti-

spoofing and deepfake detection capabilities. The system uses DeepFace enhanced with liveness detection 

for facial recognition, integrates Titanet-1 and Whisper ASR for layered voice verification, and employs a 

fine-tuned Wav2Vec2 model to identify deepfake audio. Access is controlled via an ESP32 microcontroller, 

ensuring both scalability and affordability. A comparative summary of Smart Access and previous systems 

is provided in Table 1, showcasing its superior performance in terms of security and cost-efficiency. 
 

TABLE 1: Comparison of Access Control Systems 

 



Yasmin Alkady et al.                                                 Journal of Computing and Communication  Vol.4  , No.2 , PP. 62-78  , 2025 

 

66 
 

SYSTEM BIOMETRIC TYPE ANTI-SPOOFING DEEPFAKE 

DETECTION 

COST 

KEYCARD/PIN None None None Low 

FINGERPRINT SCANNER 

[3] 

Fingerprint Moderate None High 

FACENET-BASED [4] Facial Liveness Detection None Moderate 

GMM-UBM [6] Voice Limited None Moderate 

BRUNELLI ET AL. [8] Facial + Voice Moderate None High 

SA Facial + Voice Liveness + Deepfake 

Detection 

Wav2Vec2-based Low 

3. Literature Review 

 

3.1. Evolution of Biometric Systems 

Biometric technologies have gradually emerged as a more secure alternative to traditional access 

methods like PINs and keycards, which are prone to loss, theft, or misuse. Initial biometric systems focused 

heavily on fingerprint and iris recognition, delivering high levels of accuracy but at the cost of requiring 

expensive, specialized hardware—limiting their feasibility for widespread adoption [3]. The introduction 

of facial recognition models such as FaceNet marked a significant turning point, offering contactless 

authentication by utilizing the cameras embedded in smartphones [9]. While these advancements laid the 

groundwork for modern systems, early implementations lacked effective mechanisms to counter evolving 

threats like spoofing and synthetic media attacks [5]. 

3.2. Limitations of Unimodal Biometrics 

Authentication systems based on a single biometric trait—whether facial or vocal—face notable 

challenges in terms of security and reliability. Facial recognition systems, for instance, are vulnerable to 

presentation attacks involving printed images or screens. As a response, liveness detection techniques such 

as blink or motion tracking were introduced to verify the user’s presence [5]. However, the emergence of 

deepfakes—synthetic videos or images generated using AI—has introduced sophisticated vulnerabilities that 

traditional liveness methods struggle to counter [9]. 

 

Similarly, voice authentication systems built on GMM-UBM architectures support speaker verification 

but are susceptible to advanced voice cloning and audio spoofing tools [6]. While recent innovations, like 

the Wav2Vec2 model, have enhanced the detection of artificial speech through acoustic anomaly analysis 

[16], these systems often falter in noisy environments and fail to match the security needs of high-risk 

applications [10]. Although some statistical models (e.g., likelihood ratios) underpin these techniques, 

explicit formulations are rarely presented in existing literature. 

3.3 Advancements in Multimodal Biometrics 

To overcome the weaknesses of unimodal systems, research has increasingly focused on multimodal 

biometric authentication. This approach combines multiple biometric inputs such as facial and voice data 

to improve resilience against spoofing and enhance overall accuracy. A notable example is the work by 

Brunelli and Falavigna, which demonstrated that integrating facial and voice recognition improves 
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identity verification while reducing the risk of attacks [8]. Despite these benefits, earlier multimodal 

systems often neglected the threat of AI-generated impersonations and remained reliant on costly 

infrastructure, hindering broad deployment [11]. 

With tools like Stable Diffusion and Eleven Labs making deepfake creation more accessible, there is an 

urgent need for authentication systems capable of detecting both traditional and AI-based spoofing. 

While fusion techniques like weighted score averaging are likely employed, most studies do not 

explicitly detail these algorithms. 

3.4 Addressing Synthetic Threats 

Recent research has made significant strides in developing countermeasures against deepfake media. The 

U.S. Department of Homeland Security’s 2024 report highlighted the use of liveness detection in facial 

recognition systems, while acknowledging persistent vulnerabilities to synthetic attacks [4]. Cyber link’s 

2025 guide identified AI-powered anti-spoofing as a rising trend, though many systems still lack 

comprehensive defences against deepfakes [7]. Similarly, the ABA Banking Journal has raised concerns 

over the growing risk of deepfakes in voice biometrics, recommending advanced detection techniques 

[10]. 

Academic and industry reviews including those by Springer and PMC—have emphasized the promise 

of Wav2Vec2-based models in identifying synthetic audio, but also call for the development of larger, 

more diverse datasets to improve detection accuracy [12][14]. A common metric used in these studies is 

precision, defined as in (1): 

precision = TP / (TP + FP)                (1)  

where TP refers to true positives and FP to false positives. 

3.5 Positioning SA 

Smart Access builds on these recent developments by combining facial and voice biometrics with 

cutting-edge anti-spoofing and deepfake detection, all within a scalable and cost-effective framework. The 

system uses the DeepFace model with liveness detection for facial recognition, while Titanet-1 and Whisper 

support voice authentication. A fine-tuned Wav2Vec2 model is employed to identify deepfake audio, all 

processed server-side using standard smartphone hardware. For physical access control, the system uses the 

ESP32 microcontroller, making deployment both practical and affordable. Table 2 summarizes how Smart 

Access compares to existing solutions, emphasizing its strengths in spoofing resilience and scalability. 

TABLE 1: Comparison of Recent Biometric Systems 

SYSTEM/STUDY BIOMETRIC TYPE ANTI-SPOOFING DEEPFAKE DETECTION SCALABILITY 

DHS 2024 UPDATE [4] Facial Liveness Detection Limited Moderate 

CYBERLINK 2025 

GUIDE [7] 

Facial AI-Driven None Moderate 

ABA BANKING 2024 [10] Voice Limited Emerging Low 

SPRINGER 2025 

REVIEW [12] 

N/A N/A Wav2Vec2-based N/A 
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SMART ACCESS Facial + Voice Liveness + Deepfake Detection Wav2Vec2-based High 

 

4. Proposed Approach 

SA system is structured as a mobile-centric biometric access control solution built upon a modular, 

distributed architecture. Its design prioritizes security, scalability, and user convenience while maintaining 

a fully contactless interface. The core system integrates three main components: a smartphone-based client 

interface, a cloud-hosted backend for AI processing, and an ESP32 microcontroller that governs physical 

access mechanisms. This architecture is tailored to meet the demands of modern environments, including 

hospitals, office spaces, and research facilities, where hygiene, efficiency, and data protection are essential. 

4.1 Client Interface: Web and Mobile Applications 

The client-side application, accessible via web and mobile platforms, serves as the primary interaction 

layer for end users. Built as a responsive application, it enables secure login, registration, and access requests 

through users' personal devices eliminating the need for dedicated biometric hardware. 

a) User Registration 

During initial onboarding, users are prompted to Capture a live image of their face via the device camera 

then, record a short audio clip while reading a system-generated sentence displayed on-screen. Also, these 

inputs are encrypted and transmitted to the backend, where they are processed to generate biometric 

reference templates for future authentication. 

b)  Login and Access Request 

When attempting to access a secured area, the user must submit a new live facial image then, provide a 

fresh voice sample based on a newly generated prompt. So that, this dynamic challenge-response mechanism 

ensures that pre-recorded or replayed biometric inputs are ineffective, enhancing resistance to spoofing. 

 

4.2 AI-Powered Backend Processing 

The backend server developed using Python and FastAPI, acts as the intelligence layer of the system. It 

coordinates the authentication pipeline by processing incoming biometric data through advanced AI 

models. 

a) Facial Recognition and Liveness Analysis 

Facial authentication is performed using the DeepFace framework, specifically leveraging the VGG-Face 

model to extract feature embeddings from the user’s face. These are matched against stored templates for 

identity verification. To counter spoofing techniques such as using printed photos or video replays the system 

incorporates liveness detection that monitors micro-expressions like blinking and lighting reflections. 

b) Voice Verification Pipeline 

The voice authentication workflow includes three validation layers, the first layer is speaker verification 

layer by using SpeechBrain, voice embeddings are extracted and matched to the enrolled voice profile.the 

second layer is speech content verification when the Whisper ASR model transcribes the spoken phrase and 

compares it against the expected prompt to verify content accuracy. The third one is deepfake detection layer 

while A fine-tuned Wav2Vec2 model scans for anomalies that indicate synthetic or AI-generated voice 

patterns. Only when all three voice checks are passed is the audio input accepted as valid. 

c)  Decision-Making Logic 

Once both facial and voice authentication processes are successfully completed, the backend generates a 

digitally signed token and sends a command to the ESP32 controller to unlock the designated access point. 

If any verification fails, access is denied, and the event is logged for review. 
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4.3 Physical Access Layer 

To convert digital authentication decisions into real-world actions, the system employs an ESP32 

microcontroller integrated with the physical locking mechanism. 

a)  Secure Communication and Relay Control 

The ESP32 securely communicates with the backend over HTTPS. Upon receiving a valid unlock 

instruction, it activates a relay that temporarily disengages the lock, permitting entry. 

b) Security Mechanisms 

All commands are protected using time-sensitive tokens, and communication is encrypted to prevent 

interception or replay. In the event of communication loss or tampering, fail-safe routines ensure that the 

lock remains engaged, as illustrated in Figure 2. 

4.4 Administrative Dashboard and Multi-Tenant Management 

Smart Access provides a comprehensive administrative interface for managing users, access permissions, 

and physical zones. 

a) User and Room Configuration 

Administrators can assign users to specific rooms, define permission levels, and monitor access activity in 

real time. The dashboard supports hierarchical control, enabling fine-grained management across different 

facilities. 

b) Multi-Tenant Structure 

Each organization (tenant) operates in an isolated environment with separate users, access rules, and data 

sets. This ensures that multiple businesses—such as labs, hospitals, and office buildings can securely share 

the same platform without risking data leakage. 

c) Access Logs and Alerts 

All access attempts—both successful and denied—are logged with metadata including timestamps, user 

IDs, room IDs, and failure reasons. Administrators can configure automated alerts for abnormal events, 

such as repeated failed logins or suspected spoofing attempts. Logs can also be exported for compliance 

auditing. 

4.5 Biometric Verification Pipeline 

SA system utilizes a comprehensive and layered biometric verification pipeline to ensure accurate and 

secure user authentication. This pipeline integrates three core components—facial recognition, voice 

authentication, and deepfake detection processing data captured through the user’s smartphone and 

validating it against pre-registered biometric profiles. Once verified, the results are relayed to the ESP32 

microcontroller to execute physical access decisions as clarified in Figure 3. 

a) Facial Recognition Module 

The facial recognition process begins with the smartphone capturing a real-time video stream using its 

front-facing camera. The system leverages the DeepFace framework, which uses the VGG-Face model to 

extract deep facial feature embeddings. These features are then compared with the stored biometric 

templates using a threshold-based matching algorithm. 

To defend against spoofing methods—such as printed images or 2D video replays—the system employs 

liveness detection techniques. These include motion and texture analysis, eye-blink detection, and 

illumination consistency to confirm the presence of a live human subject. Under optimal lighting 
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conditions, the system achieves a false acceptance rate (FAR) below 0.1%, ensuring a high level of 

reliability and resistance to common facial spoofing attempts. 

b) Voice Authentication Module 

The voice authentication pipeline relies on the smartphone’s built-in microphone to capture the user’s voice 

as they speak a predefined or randomly generated passphrase. This audio input undergoes a multi-step 

verification process, the first process is pre-processing and feature extraction, when the SpeechBrain 

framework filters background noise and extracts voice features suitable for analysis. the second process is 

speaker verification, whenTitanet-1 is used to confirm that the voice matches the enrolled speaker profile. 

This step uses statistical modelling such as Gaussian Mixture Models (GMMs) to calculate similarity scores. 

Content verification is the third and final process that whisper ASR transcribes the spoken phrase and 

compares it against the original prompt, ensuring that the correct passphrase was spoken. This layered 

approach allows the system to support a wide range of speech patterns and accents, achieving an equal error 

rate (EER) of approximately 2%. This balance of security and usability ensures that the system performs 

well across diverse user groups and environments. 

c)  Deepfake Detection Module 

To address the rising threat of AI-generated synthetic media, SA incorporates a deepfake detection layer 

within the voice verification process. A fine-tuned Wav2Vec2 model is used to analyze the acoustic and 

temporal properties of voice samples, identifying artifacts and irregularities indicative of synthetic speech. 

In parallel, the facial verification process extends its liveness checks to detect facial deepfakes. The 

DeepFace framework examines subtle cues such as unnatural movements, blinking irregularities, and 

inconsistencies in facial expressions or lighting. These enhancements enable the system to identify AI-

manipulated images or videos in real time. The deepfake detection module achieves a classification precision 

of approximately 95%, offering strong protection against modern impersonation attacks. The system is also 

designed to support continuous model updates, ensuring that it can adapt to emerging deepfake techniques 

and maintain its effectiveness over time. 

4.6 Security and Privacy Measures 

Smart Access is designed with a strong emphasis on end-to-end security and data protection, the first phase 

is encrypted biometric data that all biometric inputs are encrypted using AES-256 both during transmission 

and storage. The second phase API security when all internal and external communications use OAuth2 

tokens and TLS encryption to secure data in motion. In addition to spoofing protection that advanced 

spoofing defences such as liveness checks, random prompts, and deepfake detection significantly reduce the 

risk of unauthorized access. The last phase session handling when authentication tokens are time-limited, 

and user sessions automatically expire after logout or inactivity to prevent unauthorized reuse. 

4.6 Hygiene and Usability through Contactless Design 

A central feature of SA’s architecture is its contactless operation. By relying solely on the user’s 

smartphone, the system eliminates the need for shared surfaces like keypads or ID scanners, reducing the 

risk of pathogen transmission—an especially critical feature in the post-pandemic era. The intuitive user 

interface simplifies onboarding and daily use, while accessibility features (e.g., voice prompts) support a 

broader range of users, including those with limited technical proficiency. This user-centred design 

enhances both hygiene and usability across diverse environments. 
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FIGURE 2. SA System Architecture 
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FIGURE 3. Biometric Access Control Access 

 

 

5.  Implementation Details 

   SA system was developed using a combination of open-source technologies, advanced AI frameworks, 

and cost-effective hardware components to create a robust, scalable, and efficient biometric authentication 

platform. The development spanned approximately 18 months, concluding in May 2025, with a focus on 

practical integration, system performance, and cross-platform compatibility. 

a) Tools and Frameworks 

The mobile client was built using Flutter, which provides a unified, cross-platform development environment 

for both Android and iOS devices. This framework supports real-time biometric data capture, allowing users 

to seamlessly register and authenticate using their smartphones, as illustrated in Figure 4. On the backend, 

the server leverages TensorFlow to train and deploy deep learning models for facial recognition (DeepFace), 

voice processing (Whisper), and synthetic speech detection (Wav2Vec2). GPU acceleration is enabled via 

NVIDIA CUDA, significantly improving inference speed and throughput. The SpeechBrain library enhances 

speaker verification by extracting high-quality audio embeddings, while the ESP32 microcontroller 

firmware is developed using the Arduino IDE alongside ESP-IDF for fine-grained control of low-level 

hardware operations. All data exchanged within the system is protected using the OpenSSL library, 

implementing AES-256 encryption to ensure secure communication and storage. Additionally, the 

administrative dashboard was built using React with Tailwind CSS for responsive UI design and hosted on 

a Node.js server. 



Yasmin Alkady et al.                                                 Journal of Computing and Communication  Vol.4  , No.2 , PP. 62-78  , 2025 

 

73 
 

                  

(a)                                                          (b)                                                   (c) 

                 

                           (d)                                                        (e)                                                 (f) 
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                         (g)                                                                                      (h) 

 

(i) 

 

(j) 

FIGURE 4. SA System Interfaces 
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b) Development Environment 

The development environment was primarily based on Ubuntu 22.04 LTS, serving as the foundation for 

server-side components and local testing. The system architecture followed a microservices model, managed 

using Docker containers to isolate and scale individual services as needed. 

Version control and collaborative development were facilitated via Git, with code repositories hosted on 

GitHub. Testing and validation were performed in a simulated lab setting, involving 50 virtual users and 

real-time interaction scenarios. These tests were complemented by live deployment trials conducted at a 

university facility in June 2025, under realistic operating conditions. 

6. Performance Evaluation  

SA system was thoroughly evaluated using a combination of quantitative metrics and qualitative feedback. 

Testing was conducted between March and May 2025, covering various performance indicators and 

comparing results against contemporary systems. These evaluations aimed to validate the system’s accuracy, 

reliability, responsiveness, and user experience. 

6.1. Quantitative Evaluation 

To assess the system’s effectiveness, Smart Access underwent a comprehensive quantitative evaluation 

involving 100 users across 10 locations between March and May 2025. The system achieved a facial 

recognition accuracy of 98.5% as shown in Table 3, demonstrating high reliability in identity verification 

even under varied lighting and device conditions. Voice authentication performed with an equal error rate 

(EER) of 2.1% as illustrated in Table 4, indicating a well-balanced trade-off between false accepts and false 

rejects. Deepfake detection, powered by a fine-tuned Wav2Vec2 model, achieved a precision of 94.7% , 

effectively identifying synthetic voice inputs. The average end-to-end authentication latency was measured 

at 1.6 seconds as shown in Table 5, which, while slightly higher than some competitors due to cloud 

processing, ensured high security without compromising user experience. Over a 30-day trial using a 5G 

network, the system maintained 99% uptime as shown in Table 6, reflecting strong reliability and system 

stability. Compared to other state-of-the-art systems, Smart Access outperformed DHS 2024 in facial 

accuracy (98.5% vs. 95.0%) and deepfake detection (94.7% vs. 80.0%), and showed better voice 

authentication performance than Springer 2025 (2.1% EER vs. 3.5%). Although its latency was marginally 

higher than Cyberlink 2025’s 1.8 seconds, the trade-off resulted in improved detection precision and 

biometric robustness, establishing Smart Access as a leading solution in secure, real-time access control as 

illustrated in Table 3. 

Below are four separate tables, each presenting one metric from the quantitative comparison of biometric 

systems: Facial Accuracy (%), Voice EER (%), Deepfake Precision (%), and Latency (s). Each table 

includes data for the systems SA (2025), DHS 2024, Cyberlink 2025, and Springer 2025, with "N/A" used 

for metrics where no data was provided. 

TABLE 3: Facial Accuracy (%) 

SYSTEM FACIAL ACCURACY (%) 

SA (2025) 98.5 

DHS 2024 95.0 

CYBERLINK 2025 97.0 

SPRINGER 2025 N/A 
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TABLE 4: Voice EER (%) 

SYSTEM VOICE EER (%) 

SA (2025) 2.1 

DHS 2024 N/A 

CYBERLINK 2025 N/A 

SPRINGER 2025 3.5 

TABLE 4: Deepfake Precision (%) 

SYSTEM DEEPFAKE PRECISION (%) 

SA (2025) 94.7 

DHS 2024 80.0 

CYBERLINK 2025 N/A 

SPRINGER 2025 90.0 

TABLE 5: Latency (s) 

SYSTEM LATENCY (S) 

SA (2025) 1.6 

DHS 2024 2.0 

CYBERLINK 2025 1.8 

SPRINGER 2025 2.5 

TABLE 6: Uptime (%) 

SYSTEM UPTIME (%) 

SA (2025) 99 

DHS 2024 97 

CYBERLINK 2025 98 

SPRINGER 2025 96 

6.2.  Qualitative Evaluation 

In addition to technical testing, a qualitative evaluation was conducted to assess user experience and 

administrative usability. Feedback was collected from 50 end users and 10 system administrators, who 

interacted with the Smart Access system in real-world environments. Participants rated various aspects of 

the system on a 5-point scale. Overall, the system received highly favourable reviews, with ease of use 

scoring an average of 4.8 out of 5, attributed to its intuitive mobile interface and guided biometric prompts. 

Hygiene benefits were also rated positively at 4.6, reflecting the value of its fully contactless operation, 

particularly in post-pandemic settings. The enrolment process received a slightly lower score of 3.9, 

primarily due to the dual biometric setup, which some users found moderately time-consuming, though still 

manageable. Administrative users praised the system’s dashboard, giving it a rating of 4.7 for its real-time 

monitoring, user-role management, and multi-tenant support. When compared to similar systems like DHS 

2024 and Cyberlink 2025, Smart Access consistently outperformed in usability and hygiene, although its 

enrolment complexity was noted to be marginally higher due to additional biometric input requirements. 

These results highlight the system’s effectiveness not only from a security standpoint but also in delivering 

a positive and practical user experience as illustrated in table 7. 
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TABLE 7: Qualitative Comparison 

SYSTEM EASE OF USE (/5) HYGIENE BENEFITS 

(/5) 

ENROLLMENTCOMPLEXIT

Y (/5) 

ADMIN MANAGEMENT (/5) 

SA (2025) 4.8 4.6 3.9 4.7 

DHS 2024 [2] 4.0 3.5 3.0 4.0 

CYBERLINK 2025 

[5] 

4.5 4.0 3.5 - 

SPRINGER 2025 

[10] 

4.2 - 3.2 4.1 

 

7. Conclusion and Future Work 

Smart Access presents a modern, AI-powered solution to the growing demand for secure, hygienic, and user-

friendly access control in physical environments. By combining facial and voice biometrics with advanced 

spoofing and deepfake detection, the system offers robust protection against both traditional and AI-driven 

threats. Its reliance on smartphones eliminates the need for costly dedicated hardware, while cloud-based AI 

processing and ESP32-controlled hardware ensure scalability and affordability. Quantitative evaluations 

demonstrated high recognition accuracy, low error rates, strong deepfake resilience, and minimal latency, 

while qualitative feedback confirmed that users found the system intuitive, secure, and hygienic. 

Looking ahead, several enhancements are planned to extend the system’s capabilities. These include 

incorporating behavioural biometrics such as gait or keystroke dynamics to further improve identity 

assurance. In addition, efforts will focus on optimizing the enrollment process to streamline user onboarding 

without compromising security. Another key area for development is enhancing real-time deepfake detection 

through continual retraining with updated datasets and adversarial examples. Finally, expanding support for 

offline or low-bandwidth environments—such as through edge AI deployment on local devices—is also 

under consideration to make the system more resilient and adaptable. With its current foundation and 

forward-looking architecture, Smart Access is well-positioned to address emerging challenges in secure, 

contactless identity verification across a range of sectors. 
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