References
                                                                                                                 
                                                                                                                [1]      Chatterjee, Moumita, Piyush Kumar, and Dhrubasish Sarkar. "A novel framework for analyzing climate change tweets from online social media using supervised and unsupervised algorithms." In 2024 IEEE Calcutta Conference (CALCON), pp. 1-5. IEEE, 2024.
                                                                                                                [2]      Maynard D, Bontcheva K. Understanding climate change tweets: an open source toolkit for social media analysis. InEnviroInfo and ICT for Sustainability 2015 2015 Sep (pp. 242-250). Atlantis Press.
                                                                                                                [3]      Upadhyaya, Apoorva, Marco Fisichella, and Wolfgang Nejdl. "A multi-task model for sentiment aided stance detection of climate change tweets." In Proceedings of the international AAAI conference on web and social media, vol. 17, pp. 854-865. 2023.
                                                                                                                [4]      Toupin, Rémi, Florence Millerand, and Vincent Larivière. "Who tweets climate change papers? Investigating publics of research through users’ descriptions." Plos one 17, no. 6 (2022): e0268999.
                                                                                                                [5]      Mumenthaler, Christian, O. Renaud, R. Gava, and Tobias Brosch. "The impact of local temperature volatility on attention to climate change: Evidence from Spanish tweets." Global environmental change 69 (2021): 102286.
                                                                                                                [6]      Fownes, Jennifer R., Chao Yu, and Drew B. Margolin. "Twitter and climate change." Sociology Compass 12, no. 6 (2018): e12587.
                                                                                                                [7]      Marcondes, Francisco S., Adelino Gala, Renata Magalhães, Fernando Perez de Britto, Dalila Durães, and Paulo Novais. "Case Study: LLM-Based Anxiety Climate Index." In Natural Language Analytics with Generative Large-Language Models: A Practical Approach with Ollama and Open-Source LLMs, pp. 53-73. Cham: Springer Nature Switzerland, 2025.
                                                                                                                [8]      Dahal, Biraj, Sathish AP Kumar, and Zhenlong Li. "Topic modeling and sentiment analysis of global climate change tweets." Social network analysis and mining 9 (2019): 1-20.
                                                                                                                [9]      Maynard, Diana G., and Mark A. Greenwood. "Who cares about sarcastic tweets? investigating the impact of sarcasm on sentiment analysis." In Lrec 2014 proceedings. ELRA, 2014.
                                                                                                                [10]    Amendola, Miriam, Danilo Cavaliere, Carmen De Maio, Giuseppe Fenza, and Vincenzo Loia. "Towards echo chamber assessment by employing aspect-based sentiment analysis and gdm consensus metrics." Online Social Networks and Media 39 (2024): 100276.
                                                                                                                [11]    Qian, Edward. 2015. “Twitter Climate Change Sentiment Dataset.” Kaggle.com. 2015. https://www.kaggle.com/datasets/edqian/twitter-climate-change-sentiment-dataset?resource=download.
                                                                                                                [12]    Mi, Zhewei, and Hongwei Zhan. "Text mining attitudes toward climate change: Emotion and sentiment analysis of the twitter corpus." Weather, Climate, and Society 15, no. 2 (2023): 277-287.
                                                                                                                [13]    Shyrokykh, Karina, Max Girnyk, and Lisa Dellmuth. "Short text classification with machine learning in the social sciences: The case of climate change on Twitter." Plos one 18, no. 9 (2023): e0290762.
                                                                                                                [14]    Uthirapathy, Samson Ebenezar, and Domnic Sandanam. "Topic Modelling and Opinion Analysis On Climate Change Twitter Data Using LDA And BERT Model." Procedia Computer Science 218 (2023): 908-917.
                                                                                                                [15]    Kvasničková Stanislavská, Lucie, Ladislav Pilař, Xhesilda Vogli, Tomas Hlavsa, Kateřina Kuralová, Abby Feenstra, Lucie Pilařová, Richard Hartman, and Joanna Rosak-Szyrocka. "Global analysis of Twitter communication in corporate social responsibility area: sustainability, climate change, and waste management." PeerJ Computer Science 9 (2023): e1390.
                                                                                                                [16]    Webb, Geoffrey I., Eamonn Keogh, and Risto Miikkulainen. "Naïve Bayes." Encyclopedia of machine learning 15, no. 1 (2010): 713-714.
                                                                                                                [17]    LaValley, Michael P. "Logistic regression." Circulation 117, no. 18 (2008): 2395-2399.
                                                                                                                [18]    Hearst, Marti A., Susan T. Dumais, Edgar Osuna, John Platt, and Bernhard Scholkopf. "Support vector machines." IEEE Intelligent Systems and their applications 13, no. 4 (1998): 18-28.
                                                                                                                [19]    Rigatti, S.J., 2017. Random forest. Journal of Insurance Medicine, 47(1), pp.31-39.
                                                                                                                [20]    Natekin, Alexey, and Alois Knoll. "Gradient boosting machines, a tutorial." Frontiers in neurorobotics 7 (2013): 21.
                                                                                                                [21]    Jost, François, Ann Dale, and Shoshana Schwebel. "How positive is “change” in climate change? A sentiment analysis." Environmental Science & Policy 96 (2019): 27-36.
                                                                                                                [22]    Taufek, Tasha Erina, Nor Fariza Mohd Nor, Azhar Jaludin, and Sabrina Tiun. "Public Perceptions on Climate Change: A Sentiment Analysis Approach." GEMA Online Journal of Language Studies 21, no. 4 (2021).
                                                                                                                [23]    Mohamad Sham, Nabila, and Azlinah Mohamed. "Climate change sentiment analysis using lexicon, machine learning and hybrid approaches." Sustainability 14, no. 8 (2022): 4723.
                                                                                                                [24]    Rosenberg, Emelie, Carlota Tarazona, Fermín Mallor, Hamidreza Eivazi, David Pastor-Escuredo, Francesco Fuso-Nerini, and Ricardo Vinuesa. "Sentiment analysis on Twitter data towards climate action." Results in Engineering 19 (2023): 101287.
                                                                                                                [25]    Loureiro, Maria L., and Maria Alló. "Sensing climate change and energy issues: Sentiment and emotion analysis with social media in the UK and Spain." Energy Policy 143 (2020): 111490.
                                                                                                                [26]    Klein, G., Kim, Y., Deng, Y., Senellart, J., & Rush, A. M. (2017). Opennmt: Open-source toolkit for neural machine translation. arXiv preprint arXiv:1701.02810.