[6] Das, K., Cockerell, C. J., Patil, A., Pietkiewicz, P., Giulini, M., Grabbe, S., & Goldust, M. (2021). Machine Learning and Its Application in Skin Cancer. International Journal of Environmental Research and Public Health, 18(24), 13409.
[7] Bhatt, H., Shah, V., Shah, K., Shah, R., & Shah, M. (2022). State-of-the-art machine learning techniques for melanoma skin cancer detection and classification: A comprehensive review. Intelligent Medicine.
[8] Mishra, N. K., & Celebi, M. E. (2016). An Overview of Melanoma Detection in Dermoscopy Images Using Image Processing and Machine Learning. ArXiv. /abs/1601.07843
[9] N. Hameed, A. Ruskin, K. Abu Hassan and M. A. Hossain, "A comprehensive survey on image-based computer aided diagnosis systems for skin cancer," 2016 10th International Conference on Software, Knowledge, Information Management & Applications (SKIMA), Chengdu, China, 2016, pp. 205-214
[10] Popescu, D., & Ichim, L. (2022). New Trends in Melanoma Detection Using Neural Networks: A Systematic Review. Sensors, 22(2), 496.
[11] Z. E. Diame, M. N. Al-Berry, M. A. . -M. Salem and M. Roushdy, "Deep Learning Architiectures For Aided Melanoma Skin Disease Recognition: A Review," 2021 International Mobile, Intelligent, and Ubiquitous Computing Conference (MIUCC), Cairo, Egypt, 2021, pp. 324-329.
[12] Adegun, A., Viriri, S. Deep learning techniques for skin lesion analysis and melanoma cancer detection: a survey of state-of-the-art. Artif Intell Rev 54, 811–841 (2021).
[13] Hosseinzadeh Kassani, S., & Hosseinzadeh Kassani, P. (2019). A comparative study of deep learning architectures on melanoma detection. Tissue and Cell, 58, 76-83.
[14] Hekler, A., Utikal, J. S., Enk, A. H., Berking, C., Klode, J., Schadendorf, D., Jansen, P., Franklin, C., Holland-Letz, T., Krahl, D., von Kalle, C., Fröhling, S., & Brinker, T. J. (2019). Pathologist-level classification of histopathological melanoma images with deep neural networks. European Journal of Cancer, 115, 79-83.
[15] Brinker, T. J., Hekler, A., Enk, A. H., Berking, C., Haferkamp, S., Hauschild, A., Weichenthal, M., Klode, J., Schadendorf, D., Holland-Letz, T., von Kalle, C., Fröhling, S., Schilling, B., & Utikal, J. S. (2019). Deep neural networks are superior to dermatologists in melanoma image classification. European Journal of Cancer, 119, 11-17.
[16] Bisla, D., Choromanska, A., Stein, J. A., Polsky, D., & Berman, R. (2019). Towards Automated Melanoma Detection with Deep Learning: Data Purification and Augmentation. ArXiv.
[17] Mijwil, M.M. Skin cancer disease images classification using deep learning solutions. Multimed Tools Appl 80, 26255–26271 (2021).
[18] Aljohani, K., & Turki, T. (2022). Automatic Classification of Melanoma Skin Cancer with Deep Convolutional Neural Networks. AI, 3(2), 512-525.
[19] Fraiwan, M., & Faouri, E. (2022). On the Automatic Detection and Classification of Skin Cancer Using Deep Transfer Learning. Sensors, 22(13), 4963.
[20] S. Kavitha, R. Shalini, N. Harini Sree and J. Akash, "Intelligant Segmentation and Classification for Skin Cancer Prediction," 2023 2nd International Conference on Advancements in Electrical, Electronics, Communication, Computing and Automation (ICAECA), Coimbatore, India, 2023, pp. 1-6
[21] Alzubaidi, L., Zhang, J., Humaidi, A.J. et al. Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. J Big Data 8, 53 (2021).
[22] H. -C. Shin et al., "Deep Convolutional Neural Networks for Computer-Aided Detection: CNN Architectures, Dataset Characteristics and Transfer Learning," in IEEE Transactions on Medical Imaging, vol. 35, no. 5, pp. 1285-1298, May 2016.