• Home
  • Browse
    • Current Issue
    • By Issue
    • By Author
    • By Subject
    • Author Index
    • Keyword Index
  • Journal Info
    • About Journal
    • Aims and Scope
    • Editorial Board
    • Publication Ethics
    • Peer Review Process
  • Guide for Authors
  • Submit Manuscript
  • Contact Us
 
  • Login
  • Register
Home Articles List Article Information
  • Save Records
  • |
  • Printable Version
  • |
  • Recommend
  • |
  • How to cite Export to
    RIS EndNote BibTeX APA MLA Harvard Vancouver
  • |
  • Share Share
    CiteULike Mendeley Facebook Google LinkedIn Twitter
Journal of Computing and Communication
arrow Articles in Press
arrow Current Issue
Journal Archive
Volume Volume 4 (2025)
Volume Volume 3 (2024)
Issue Issue 2
Issue Issue 1
Volume Volume 2 (2023)
Volume Volume 1 (2022)
Elbhrawy, A., Belal, M., Hassanein, M. (2024). CES: Cost Estimation System for Enhancing the Processing of Car Insurance Claims. Journal of Computing and Communication, 3(1), 55-69. doi: 10.21608/jocc.2024.339922
Ahmed Shawky Elbhrawy; Mohamed AbdelFattah Belal; mohamed Sameh Hassanein. "CES: Cost Estimation System for Enhancing the Processing of Car Insurance Claims". Journal of Computing and Communication, 3, 1, 2024, 55-69. doi: 10.21608/jocc.2024.339922
Elbhrawy, A., Belal, M., Hassanein, M. (2024). 'CES: Cost Estimation System for Enhancing the Processing of Car Insurance Claims', Journal of Computing and Communication, 3(1), pp. 55-69. doi: 10.21608/jocc.2024.339922
Elbhrawy, A., Belal, M., Hassanein, M. CES: Cost Estimation System for Enhancing the Processing of Car Insurance Claims. Journal of Computing and Communication, 2024; 3(1): 55-69. doi: 10.21608/jocc.2024.339922

CES: Cost Estimation System for Enhancing the Processing of Car Insurance Claims

Article 5, Volume 3, Issue 1, January 2024, Page 55-69  XML PDF (769.29 K)
Document Type: Original Article
DOI: 10.21608/jocc.2024.339922
View on SCiNiTO View on SCiNiTO
Authors
Ahmed Shawky Elbhrawy email 1; Mohamed AbdelFattah Belal2; mohamed Sameh Hassanein email 3
1Business Information System Department, Faculty of Commerce and Business Administration, Helwan University, Cairo, Egypt
2Professor, Computer Science Department Faculty of Computers and Artificial Intelligence Helwan University Cairo, Egypt
3Integrated Thebes Institutes for Computing & Management Science Cairo, Egypt
Abstract
Damage assessment is crucial in determining insurance reimbursements in the car insurance industry. However, manual inspection is time-consuming and financially costly. Artificial Intelligence (AI) offers a promising automatic damage assessment solution; we propose a Cost Estimation System (CES) for car damage volume level recognition and cost estimation. CES extracts damage estimates from mobile imagery data and combines them with structured customer data to generate accurate cost estimates for insurance purposes. This paper adopts the CRISP-DM (Cross Industry Standard Process for Data Mining) methodology to develop a robust and systematic model. Leveraging AI technology such as the (You Only Look Once) YOLO model and Transformers in image classification while expediting the claims process and mitigating fraud risk. Evaluating CES performance indicates the ability to accurately identify and locate damaged regions in car images, with an average precision of 78.50%, an average recall of 70.24%, and a mean Average Precision (mAP) of 0.66. Resulting in satisfactory performance from the curated dataset of 2508 car photos, which is classified by car body parts, and their inspected damage parts for enhancing cost estimation, productivity, accuracy, and time savings.
Keywords
Artificial Intelligence; Deep learning; Car Insurance; Cost estimation; CRISP-DM
References
[1]

FRA, "FRA ANNUAL REPORT 2022," Financial Regulatory Authority (FRA), Cairo,Egypt, 2022. [Online]. Available: https://fra.gov.eg/wp-content/uploads/2023/05/Report2022-2.pdf. [Accessed 1 10 2023].

[2]

H. Johnson, "investopedia.com," Investopedia, 19 Apr 2023. [Online]. Available: https://www.investopedia.com/auto-insurance-methodology-5219007. [Accessed 1 10 2023].

[3]

Elhajjar, S., Yacoub, L., & Yaacoub, H. (2023). Automation in business research: systematic literature review. Information Systems and e-Business Management, 21(3), 675-698.

[4]

Zheng, X., Qian, S., Wei, S., Zhou, S., & Hou, Y. (2023). The combination of transformer and you only look once for automatic concrete pavement crack detection. Applied Sciences, 13(16), 9211. https://doi.org/10.3390/app13169211.

[5]

Qianqian, Z., Weiming, G., Ying, S., & Zihao, Z. (2020, April). Research on intelligent vehicle damage assessment system based on computer vision. In Journal of Physics: Conference Series (Vol. 1518, No. 1, p. 012050). IOP Publishing.doi:10.1088/1742-6596/1518/1/012050.

[6]

Singh, R., Ayyar, M. P., Pavan, T. V. S., Gosain, S., & Shah, R. R. (2019, September). Automating car insurance claims using deep learning techniques. In 2019 IEEE Fifth International Conference on Multimedia Big Data (BigMM) (pp. 199-207). IEEE.doi: 10.1109/BigMM.2019.00-25.

[7]

Li, L., Ono, K., & Ngan, C. K. (2021, April). A deep learning and transfer learning approach for vehicle damage detection. In The International FLAIRS Conference Proceedings (Vol. 34). https://doi.org/10.32473/flairs.v34i1.128473.

[8]

Gandhi, R. (2021). Deep Learning Based Car Damage Detection, Classification and Severity. International Journal, 10(5). https://doi.org/10.30534/ijatcse/2021/031052021.

[9]

Gustian, Y. W., Rahman, B., Hindarto, D., & Wedha, A. B. P. B. (2023). Detects Damage Car Body using YOLO Deep Learning Algorithm. Sinkron: jurnal dan penelitian teknik informatika, 8(2), 1153-1165. 10.33395/sinkron.v8i2.12394.

[10]

Mallikarjuna & Arun Kumar .(2022).Vehicle Damage Detection and Classification Using Image Processing. International Journal of Advanced Research in Science, Communication and Technology 2(9), pp. 568-574.

[11]

Thar, M. H., Zhang, M., Nam, G. H., & Lee, D. M. (2022, November). Vehicle Damage Volume Level Recognition Algorithm based on Convolution Neural Network and Yolo Model. In Proc. 2022 International Conference on Communication and Computer Research (ICCR 2022), KICS (Korea Information and Communications Society), UCSY (University of Computer Studies, Yangon), Myanmar, ETRI (Electronics & Telecommunications Research Institute) (pp. 21-22).

[12]

Dwivedi, M., Malik, H. S., Omkar, S. N., Monis, E. B., Khanna, B., Samal, S. R., ... & Rathi, A. (2021). Deep learning-based car damage classification and detection. In Advances in Artificial Intelligence and Data Engineering: Select Proceedings of AIDE 2019 (pp. 207-221). Springer Singapore.

[13]

Zhu, Q., Hu, W., Liu, Y., & Zhao, Z. (2021, April). Research on Vehicle Appearance Damage Recognition Based on Deep Learning. In Journal of Physics: Conference Series (Vol. 1880, No. 1, p. 012024). IOP Publishing.DOI 10.1088/1742-6596/1880/1/012024.

[14]

Wang, N., Shang, L., & Song, X. (2023). A Transformer-Optimized Deep Learning Network for Road Damage Detection and Tracking. Sensors, 23(17), 7395.

[15]

Rakshata, P., Padma, H. V., Pooja, M., Yashaswini, H. V., & Karthik, V. (2019). "Car Damage Detection and Analysis Using Deep Learning Algorithm For Automotive," International Journal of Scientific Research & Engineering Trends, vol. 5, no. 6, pp. 1896-1898.

[16]

Martínez-Plumed, F., Contreras-Ochando, L., Ferri, C., Hernández-Orallo, J., Kull, M., Lachiche, N., ... & Flach, P. (2019). CRISP-DM twenty years later: From data mining processes to data science trajectories. IEEE Transactions on Knowledge and Data Engineering, 33(8), 3048-3061.DOI: 10.1109/TKDE.2019.2962680.

[17]

Dorathi Jayaseeli, J. D., Jayaraj, G. K., Kanakarajan, M., & Malathi, D. (2021). Car Damage Detection and Cost Evaluation Using MASK R-CNN. In Intelligent Computing and Innovation on Data Science: Proceedings of ICTIDS 2021 (pp. 279-288). Springer Singapore. https://doi.org/10.1007/978-981-16-3153-5_31.

[18]

Maharana, K., Mondal, S., & Nemade, B. (2022). A review: Data pre-processing and data augmentation techniques. Global Transitions Proceedings, 3(1), 91-99. https://doi.org/10.1016/j.gltp.2022.04.020.

[19]

Willemink, M. J., Koszek, W. A., Hardell, C., Wu, J., Fleischmann, D., Harvey, H., ... & Lungren, M. P. (2020). Preparing medical imaging data for machine learning. Radiology, 295(1), 4-15. https://doi.org/10.1148/radiol.2020192224.

[20]

Wang, X., Li, W., & Wu, Z. (2023). CarDD: A New Dataset for Vision-Based Car Damage Detection. IEEE Transactions on Intelligent Transportation Systems.DOI: 10.1109/TITS.2023.3258480.

[21]

Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once: Unified, real-time object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 779-788).

[22]

Google, "Welcome to colaboratory," 5 October 2023. [Online]. Available: https://colab.research.google.com/?utm_source=scs-index#. [Accessed 19 October 2023].

[23]

Bazi, Y., Bashmal, L., Rahhal, M. M. A., Dayil, R. A., & Ajlan, N. A. (2021). Vision transformers for remote sensing image classification. Remote Sensing, 13(3), 516. https://doi.org/10.3390/rs13030516.

[24]

Slimani, H., El Mhamdi, J., & Jilbab, A. (2023). Artificial Intelligence-based Detection of Fava Bean Rust Disease in Agricultural Settings: An Innovative Approach. International Journal of Advanced Computer Science and Applications, 14(6). DOI: 10.14569/IJACSA.2023.0140614.

[25]

Guo, J., Wang, Q., & Li, Y. (2021). Evaluation-oriented façade defects detection using rule-based deep learning method. Automation in Construction, 131, 103910. https://doi.org/10.1016/j.autcon.2021.103910.

[26]

Sirisha, U., Praveen, S. P., Srinivasu, P. N., Barsocchi, P., & Bhoi, A. K. (2023). Statistical analysis of design aspects of various YOLO-based deep learning models for object detection. International Journal of Computational Intelligence Systems, 16(1), 126. https://doi.org/10.1007/s44196-023-00302-w.

Statistics
Article View: 551
PDF Download: 690
Home | Glossary | News | Aims and Scope | Sitemap
Top Top

Journal Management System. Designed by NotionWave.