[1]
|
[2]
|
|
[3]
|
Elhajjar, S., Yacoub, L., & Yaacoub, H. (2023). Automation in business research: systematic literature review. Information Systems and e-Business Management, 21(3), 675-698.
|
[4]
|
Zheng, X., Qian, S., Wei, S., Zhou, S., & Hou, Y. (2023). The combination of transformer and you only look once for automatic concrete pavement crack detection. Applied Sciences, 13(16), 9211. https://doi.org/10.3390/app13169211.
|
[5]
|
Qianqian, Z., Weiming, G., Ying, S., & Zihao, Z. (2020, April). Research on intelligent vehicle damage assessment system based on computer vision. In Journal of Physics: Conference Series (Vol. 1518, No. 1, p. 012050). IOP Publishing.doi:10.1088/1742-6596/1518/1/012050.
|
[6]
|
Singh, R., Ayyar, M. P., Pavan, T. V. S., Gosain, S., & Shah, R. R. (2019, September). Automating car insurance claims using deep learning techniques. In 2019 IEEE Fifth International Conference on Multimedia Big Data (BigMM) (pp. 199-207). IEEE.doi: 10.1109/BigMM.2019.00-25.
|
[7]
|
Li, L., Ono, K., & Ngan, C. K. (2021, April). A deep learning and transfer learning approach for vehicle damage detection. In The International FLAIRS Conference Proceedings (Vol. 34). https://doi.org/10.32473/flairs.v34i1.128473.
|
[8]
|
Gandhi, R. (2021). Deep Learning Based Car Damage Detection, Classification and Severity. International Journal, 10(5). https://doi.org/10.30534/ijatcse/2021/031052021.
|
[9]
|
Gustian, Y. W., Rahman, B., Hindarto, D., & Wedha, A. B. P. B. (2023). Detects Damage Car Body using YOLO Deep Learning Algorithm . Sinkron: jurnal dan penelitian teknik informatika, 8(2), 1153-1165. 10.33395/sinkron.v8i2.12394.
|
[10]
|
Mallikarjuna & Arun Kumar .(2022).Vehicle Damage Detection and Classification Using Image Processing. International Journal of Advanced Research in Science, Communication and Technology 2(9), pp. 568-574.
|
[11]
|
Thar, M. H., Zhang, M., Nam, G. H., & Lee, D. M. (2022, November). Vehicle Damage Volume Level Recognition Algorithm based on Convolution Neural Network and Yolo Model. In Proc. 2022 International Conference on Communication and Computer Research (ICCR 2022), KICS (Korea Information and Communications Society), UCSY (University of Computer Studies, Yangon), Myanmar, ETRI (Electronics & Telecommunications Research Institute) (pp. 21-22).
|
[12]
|
Dwivedi, M., Malik, H. S., Omkar, S. N., Monis, E. B., Khanna, B., Samal, S. R., ... & Rathi, A. (2021). Deep learning-based car damage classification and detection. In Advances in Artificial Intelligence and Data Engineering: Select Proceedings of AIDE 2019 (pp. 207-221). Springer Singapore.
|
[13]
|
Zhu, Q., Hu, W., Liu, Y., & Zhao, Z. (2021, April). Research on Vehicle Appearance Damage Recognition Based on Deep Learning. In Journal of Physics: Conference Series (Vol. 1880, No. 1, p. 012024). IOP Publishing.DOI 10.1088/1742-6596/1880/1/012024.
|
[14]
|
Wang, N., Shang, L., & Song, X. (2023). A Transformer-Optimized Deep Learning Network for Road Damage Detection and Tracking. Sensors, 23(17), 7395.
|
[15]
|
Rakshata, P., Padma, H. V., Pooja, M., Yashaswini, H. V., & Karthik, V. (2019). "Car Damage Detection and Analysis Using Deep Learning Algorithm For Automotive," International Journal of Scientific Research & Engineering Trends, vol. 5, no. 6, pp. 1896-1898.
|
[16]
|
Martínez-Plumed, F., Contreras-Ochando, L., Ferri, C., Hernández-Orallo, J., Kull, M., Lachiche, N., ... & Flach, P. (2019). CRISP-DM twenty years later: From data mining processes to data science trajectories. IEEE Transactions on Knowledge and Data Engineering, 33(8), 3048-3061.DOI : 10.1109/TKDE.2019.2962680.
|
[17]
|
Dorathi Jayaseeli, J. D., Jayaraj, G. K., Kanakarajan, M., & Malathi, D. (2021). Car Damage Detection and Cost Evaluation Using MASK R-CNN. In Intelligent Computing and Innovation on Data Science: Proceedings of ICTIDS 2021 (pp. 279-288). Springer Singapore. https://doi.org/10.1007/978-981-16-3153-5_31.
|
[18]
|
|
[19]
|
Willemink, M. J., Koszek, W. A., Hardell, C., Wu, J., Fleischmann, D., Harvey, H., ... & Lungren, M. P. (2020). Preparing medical imaging data for machine learning. Radiology, 295(1), 4-15. https://doi.org/10.1148/radiol.2020192224.
|
[20]
|
Wang, X., Li, W., & Wu, Z. (2023). CarDD: A New Dataset for Vision-Based Car Damage Detection. IEEE Transactions on Intelligent Transportation Systems.DOI: 10.1109/TITS.2023.3258480.
|
[21]
|
Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once: Unified, real-time object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 779-788).
|
[22]
|
|
[23]
|
Bazi, Y., Bashmal, L., Rahhal, M. M. A., Dayil, R. A., & Ajlan, N. A. (2021). Vision transformers for remote sensing image classification. Remote Sensing, 13(3), 516. https://doi.org/10.3390/rs13030516.
|
[24]
|
Slimani, H., El Mhamdi, J., & Jilbab, A. (2023). Artificial Intelligence-based Detection of Fava Bean Rust Disease in Agricultural Settings: An Innovative Approach. International Journal of Advanced Computer Science and Applications, 14(6). DOI: 10.14569/IJACSA.2023.0140614.
|
[25]
|
|
[26]
|
Sirisha, U., Praveen, S. P., Srinivasu, P. N., Barsocchi, P., & Bhoi, A. K. (2023). Statistical analysis of design aspects of various YOLO-based deep learning models for object detection. International Journal of Computational Intelligence Systems, 16(1), 126. https://doi.org/10.1007/s44196-023-00302-w.
|