[1] Dougherty, C. (2011). Introduction to econometrics. Oxford university press, USA.
[2] Hayashi, F. (2011). Econometrics. Princeton University Press.
[3] Durlauf, S. N., Johnson, P. A., & Temple, J. R. (2005). Growth econometrics. Handbook of economic growth, 1, 555-677.
[4] Andrews, D. W. (1994). Empirical process methods in econometrics. Handbook of econometrics, 4, 2247-2294.
[5] Khuat, T. T., & Le, M. H. (2017). An application of artificial neural networks and fuzzy logic on the stock price prediction problem. JOIV: International Journal on Informatics Visualization, 1(2), 40-49.
[6] Lee, J. W. (2001, June). Stock price prediction using reinforcement learning. In ISIE 2001. 2001 IEEE International Symposium on Industrial Electronics Proceedings (Cat. No. 01TH8570) (Vol. 1, pp. 690-695). IEEE.
[7] Jordan, M. I., & Mitchell, T. M. (2015). Machine learning: Trends, perspectives, and prospects. Science, 349(6245), 255-260.
[8] El Naqa, I., & Murphy, M. J. (2015). What is machine learning? (pp. 3-11). Springer International Publishing.
[9] Carleo, G., Cirac, I., Cranmer, K., Daudet, L., Schuld, M., Tishby, N., ... & Zdeborová, L. (2019). Machine learning and the physical sciences. Reviews of Modern Physics, 91(4), 045002.
[10] Leung, C. K. S., MacKinnon, R. K., & Wang, Y. (2014, July). A machine learning approach for stock price prediction. In Proceedings of the 18th International Database Engineering & Applications Symposium (pp. 274-277).
[11] Vijh, M., Chandola, D., Tikkiwal, V. A., & Kumar, A. (2020). Stock closing price prediction using machine learning techniques. Procedia computer science, 167, 599-606.
[12] Tsai, C. F., & Wang, S. P. (2009, March). Stock price forecasting by hybrid machine learning techniques. In Proceedings of the international multiconference of engineers and computer scientists (Vol. 1, No. 755, p. 60).
[13] Bansal, M., Goyal, A., & Choudhary, A. (2022). Stock market prediction with high Accuracy using machine learning techniques. Procedia Computer Science, 215, 247-265.
[14] Usmani, M., Adil, S. H., Raza, K., & Ali, S. S. A. (2016, August). Stock market prediction using machine learning techniques. In 2016 3rd international conference on computer and information sciences (ICCOINS) (pp. 322-327). IEEE.
[15] Kohli, P. P. S., Zargar, S., Arora, S., & Gupta, P. (2019). Stock prediction using machine learning algorithms. In Applications of Artificial Intelligence Techniques in Engineering: SIGMA 2018, Volume 1 (pp. 405-414). Springer Singapore.
[16] Wang, H. (2020, July). Stock price prediction based on machine learning approaches. In Proceedings of the 3rd International Conference on Data Science and Information Technology (pp. 1-5).
[17] Jakkula, V. (2006). Tutorial on support vector machine (svm). School of EECS, Washington State University, 37(2.5), 3.
[18] Maulud, D., & Abdulazeez, A. M. (2020). A review on linear regression comprehensive in machine learning. Journal of Applied Science and Technology Trends, 1(4), 140-147.
[19] Ying, C., Qi-Guang, M., Jia-Chen, L., & Lin, G. (2013). Advance and prospects of AdaBoost algorithm. Acta Automatica Sinica, 39(6), 745-758.
[20] Biau, G., & Scornet, E. (2016). A random forest guided tour. Test, 25, 197-227.
[21] Freund, Y., & Mason, L. (1999, June). The alternating decision tree learning algorithm. In icml (Vol. 99, pp. 124-133).
[22] Natekin, A., & Knoll, A. (2013). Gradient boosting machines, a tutorial. Frontiers in neurorobotics, 7, 21.
[23] Zhang, S., Cheng, D., Deng, Z., Zong, M., & Deng, X. (2018). A novel kNN algorithm with data-driven k parameter computation. Pattern Recognition Letters, 109, 44-54.
[24] Islam, M., Chen, G., & Jin, S. (2019). An overview of neural Network. American Journal of Neural Networks and Applications, 5(1), 7-11.
[25] Chicco, D., Warrens, M. J., & Jurman, G. (2021). The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. PeerJ Computer Science, 7, e623.