[1] Louis, D. N., Perry, A., Reifenberger, G., Von Deimling, A., Figarella-Branger, D., Cavenee, W. K., ... & Ellison, D. W. (2016). The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta neuropathologica, 131, 803-820.
[2] Tandel, G. S., Biswas, M., Kakde, O. G., Tiwari, A., Suri, H. S., Turk, M., ... & Suri, J. S. (2019). A review on a deep learning perspective in brain cancer classification. Cancers, 11(1), 111.
[3] Mandloi, S., Zuber, M., & Gupta, R. K. (2024). An explainable brain tumor detection and classification model using deep learning and layer-wise relevance propagation. Multimedia Tools and Applications, 83(11), 33753-33783.
[4] Roth, C. G., Marzio, D. H. D., & Guglielmo, F. F. (2018). Contributions of magnetic resonance imaging to gastroenterological practice: MRIs for GIs. Digestive Diseases and Sciences, 63, 1102-1122.
[5] Gumaei, A., Hassan, M. M., Hassan, M. R., Alelaiwi, A., & Fortino, G. (2019). A hybrid feature extraction method with regularized extreme learning machine for brain tumor classification. IEEE Access, 7, 36266-36273.
[6] Tercan, H., & Meisen, T. (2022). Machine learning and deep learning based predictive quality in manufacturing: a systematic review. Journal of Intelligent Manufacturing, 33(7), 1879-1905.
[7] Bakas, S., Reyes, M., Jakab, A., Bauer, S., Rempfler, M., Crimi, A., ... & Jambawalikar, S. R. (2018). Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge. arXiv preprint arXiv:1811.02629.
[8] Milletari, F., Navab, N., & Ahmadi, S. A. (2016, October). V-net: Fully convolutional neural networks for volumetric medical image segmentation. In 2016 fourth international conference on 3D vision (3DV) (pp. 565-571). Ieee.
[9] Amin, J., Sharif, M., Yasmin, M., Saba, T., & Raza, M. (2020). Use of machine intelligence to conduct analysis of human brain data for detection of abnormalities in its cognitive functions. Multimedia Tools and Applications, 79, 10955-10973.
[10] Darwish, A., Hassanien, A. E., & Das, S. (2020). A survey of swarm and evolutionary computing approaches for deep learning. Artificial intelligence review, 53(3), 1767-1812.
[11] Talo, M., Baloglu, U. B., Yıldırım, Ö., & Acharya, U. R. (2019). Application of deep transfer learning for automated brain abnormality classification using MR images. Cognitive Systems Research, 54, 176-188.
[12] Khan, M. A., Khan, M. A., Ahmed, F., Mittal, M., Goyal, L. M., Hemanth, D. J., & Satapathy, S. C. (2020). Gastrointestinal diseases segmentation and classification based on duo-deep architectures. Pattern Recognition Letters, 131, 193-204.
[13] Gawande, S. S., & Mendre, V. (2017). Brain tumor diagnosis using deep neural network (dnn). International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering, 5(5), 10196-10203.
[14] Asif, S., Zhao, M., Tang, F., & Zhu, Y. (2023). An enhanced deep learning method for multi-class brain tumor classification using deep transfer learning. Multimedia Tools and Applications, 82(20), 31709-31736.
[15] Deepak, S., & Ameer, P. M. (2019). Brain tumor classification using deep CNN features via transfer learning. Computers in biology and medicine, 111, 103345.
[16] Khawaldeh, S., Pervaiz, U., Rafiq, A., & Alkhawaldeh, R. S. (2017). Noninvasive grading of glioma tumor using magnetic resonance imaging with convolutional neural networks. Applied Sciences, 8(1), 27.
[17] Çinar, A., & Yildirim, M. (2020). Detection of tumors on brain MRI images using the hybrid convolutional neural network architecture. Medical hypotheses, 139, 109684.
[18] Saxena, P., Maheshwari, A., & Maheshwari, S. (2020). Predictive modeling of brain tumor: a deep learning approach. In Innovations in Computational Intelligence and Computer Vision: Proceedings of ICICV 2020 (pp. 275-285). Singapore: Springer Singapore.
[19] Díaz-Pernas, F. J., Martínez-Zarzuela, M., Antón-Rodríguez, M., & González-Ortega, D. (2021, February). A deep learning approach for brain tumor classification and segmentation using a multiscale convolutional neural network. In Healthcare (Vol. 9, No. 2, p. 153). MDPI.
[20] Irmak, E. (2021). Multi-classification of brain tumor MRI images using deep convolutional neural network with fully optimized framework. Iranian Journal of Science and Technology, Transactions of Electrical Engineering, 45(3), 1015-1036.
[21] Cheng, J., Huang, W., Cao, S., Yang, R., Yang, W., Yun, Z., ... & Feng, Q. (2015). Enhanced performance of brain tumor classification via tumor region augmentation and partition. PloS one, 10(10), e0140381.
[22] Reza, A. W., Hasan, M. M., Nowrin, N., & Shibly, M. A. (2021). Pre-trained deep learning models in automatic COVID-19 diagnosis. Indonesian Journal of Electrical Engineering and Computer Science, 22(3), 1540-1547.
[23] Devasia, J., Goswami, H., Lakshminarayanan, S., Rajaram, M., & Adithan, S. (2023). Deep learning classification of active tuberculosis lung zones wise manifestations using chest X-rays: a multi label approach. Scientific Reports, 13(1), 887.
[24] H. Yoon, U. Ali, J. Choi, and E. Park, “Rethinking Convolutional Neural Networks for Trajectory Refinement,” 2023, doi: 10.2139/ssrn.4477664.
[25] Başarslan, M. S., & Kayaalp, F. (2023). MBi-GRUMCONV: A novel Multi Bi-GRU and Multi CNN-Based deep learning model for social media sentiment analysis. Journal of Cloud Computing, 12(1), 5.
[26] Tan, M., & Le, Q. (2019, May). Efficientnet: Rethinking model scaling for convolutional neural networks. In International conference on machine learning (pp. 6105-6114). PMLR.
[28] Masoud, N., 2023. Brain tumor mri dataset. URL: https://www.kaggle.com/datasets/masoudnickparvar/brain-tumor-mri-dataset/data. [Online; accessed September 15, 2024].
[29] Sajjad, M., et al., Multi-grade brain tumor classification using deep CNN with extensive data augmentation. Elsevier. 2019. 30: p. 174-182.
[30] H. A. Shah, F. Saeed, S. Yun, J.-H. Park, A. Paul, and J.-M. Kang, ‘‘A robust approach for brain tumor detection in magnetic resonance images using finetuned EfficientNet,’’ IEEE Access, vol. 10, pp. 65426–65438, 2022.
[31] N. Noreen, S. Palaniappan, A. Qayyum, I. Ahmad, and M. O. Alassafi, “Brain Tumor Classification Based on Fine-Tuned Models and the Ensemble Method,” Computers, Materials & Continua, vol. 67, no. 3, pp. 3967–3982, 2021.
[32] F. Zulfiqar, U. Ijaz Bajwa, and Y. Mehmood, “Multi-class classification of brain tumor types from MR images using EfficientNets,” Biomedical Signal Processing and Control, vol. 84, p. 104777, Jul. 2023.