References
                                                                                                                [1]     Deshmukh, A., & Ravulakollu, K. (2024). An Efficient CNN-Based Intrusion Detection System for IoT: Use Case Towards Cybersecurity. Technologies, 12(10), 203. https://doi.org /10.3390/ technologies12100203).
                                                                                                                [2]     Alshdadi, A. A., Almazroi, A. A., Ayub, N., Lytras, M. D., Alsolami, E., & Alsubaei, F. S. (2024). 
Big Data-Driven Deep Learning Ensembler for DDoS Attack Detection. 
Future Internet, 16(12), 458. https://doi.org/10.3390/fi16120458.
[3]     Amamra, A., & Terrelonge, V. (2025). 
Multiple Kernel Transfer Learning for Enhancing Network Intrusion Detection in Encrypted and Heterogeneous Network Environments. 
Electronics, 14(1), 80. https://doi.org/10.3390/electronics14010080.
[4]     Li, L., Lu, Y., Yang, G., & Yan, X. (2024). 
End-to-End Network Intrusion Detection Based on Contrastive Learning. 
Sensors, 24(7), 2122. https://doi.org/10.3390/s24072122.
[5]     Jamoos, M., Mora, A. M., AlKhanafseh, M., & Surakhi, O. (2024). 
A Comparative Analysis of the TDCGAN Model for Data Balancing and Intrusion Detection. 
Signals, 5(3), 580-596. https://doi.org/10.3390/signals5030032.
[6]     Ahmed, Y., Azad, M. A., & Asyhari, T. (2024). 
Rapid Forecasting of Cyber Events Using Machine Learning-Enabled Features. 
Information, 15(1), 36. https://doi.org/10.3390/info15010036.
[7]     Becerra-Suarez, F. L., Fernández-Roman, I., & Forero, M. G. (2024). 
Improvement of Distributed Denial of Service Attack Detection through Machine Learning and Data Processing. 
Mathematics, 12(9), 1294. https://doi.org/10.3390/math12091294.
[8]     Rasheed, M., Saeed, F., Almazroi, A. A., Alsubaei, F. S., & Almazroi, A. A. (2024). Enhancing Intrusion Detection Systems Using a Deep Learning and Data Augmentation Approach. 
Systems, 12(3), 79. 
https://doi.org/10.3390/systems12030079
[9]     Attou, H., Mohy-eddine, M., Guezzaz, A., Benkirane, S., Azrour, M., Alabdultif, A., & Almusallam, N. (2023). Towards an Intelligent Intrusion Detection System to Detect Malicious Activities in Cloud Computing. 
Applied Sciences, 13(17), 9588. 
https://doi.org/10.3390/app13179588
[10]   Alrefaei, A., & Ilyas, M. (2024). Using Machine Learning Multiclass Classification Technique to Detect IoT Attacks in Real Time. 
Sensors, 24(14), 4516. 
https://doi.org/10.3390/s24144516
[12]   deh, A., & Abu Taleb, A. (2023). Ensemble-Based Deep Learning Models for Enhancing IoT Intrusion Detection. 
Applied Sciences, 13(21), 11985. 
https://doi.org/10.3390/app132111985
[13]   Musleh, D., Alotaibi, M., Alhaidari, F., Rahman, A., & Mohammad, R. M. (2023). Intrusion Detection System Using Feature Extraction with Machine Learning Algorithms in IoT. 
J. Sens. Actuator Netw., 12(2), 29. 
https://doi.org/10.3390/jsan12020029
[14]   Chaganti, R., Suliman, W., Ravi, V., & Dua, A. (2023). Deep Learning Approach for SDN-Enabled Intrusion Detection System in IoT Networks. 
Information, 14(1), 41. 
https://doi.org/10.3390/info14010041
                                                                                                                                                                                                                                 [16]   Shah, H., Shah, D., Jadav, N. K., Gupta, R., Tanwar, S., Alfarraj, O., Tolba, A., Raboaca, M. S., & Marina, V. (2023). Deep Learning-Based Malicious Smart Contract and Intrusion Detection System for IoT Environment. 
Mathematics, 11(2), 418. 
https://doi.org/10.3390/math11020418
[17]   Nguyen, X.-H., Nguyen, X.-D., Huynh, H.-H., & Le, K.-H. (2022). Realguard: A Lightweight Network Intrusion Detection System for IoT Gateways. 
Sensors, 22(2), 432. 
https://doi.org/10.3390/s22020432
[18]   Chaganti, R., Mourade, A., Ravi, V., Vemprala, N., Dua, A., & Bhushan, B. (2022). A Particle Swarm Optimization and Deep Learning Approach for Intrusion Detection System in Internet of Medical Things. 
Sustainability, 14(19), 12828. 
https://doi.org/10.3390/su141912828
[19]   Almaiah, M. A., Almomani, O., Alsaaidah, A., Al-Otaibi, S., Bani-Hani, N., Al Hwaitat, A. K., Al-Zahrani, A., Lutfi, A., Bani Awad, A., & Aldhyani, T. H. H. (2022). Performance Investigation of Principal Component Analysis for Intrusion Detection System Using Different Support Vector Machine Kernels. 
Electronics, 11(21), 3571. 
https://doi.org/10.3390/electronics11213571
[20]   Alghamdi, R., & Bellaiche, M. (2022). Evaluation and Selection Models for Ensemble Intrusion Detection Systems in IoT. 
IoT, 3(2), 285–314. 
https://doi.org/10.3390/iot3020017
[21]   Gautam, S., Henry, A., Zuhair, M., Rashid, M., Javed, A. R., & Maddikunta, P. K. R. (2022). A Composite Approach of Intrusion Detection Systems: Hybrid RNN and Correlation-Based Feature Optimization. 
Electronics, 11(21), 3529. 
https://doi.org/10.3390/electronics11213529
[22]   Fu, Y., Du, Y., Cao, Z., Li, Q., & Xiang, W. (2022). A Deep Learning Model for Network Intrusion Detection with Imbalanced Data. 
Electronics, 11(6), 898. 
https://doi.org/10.3390/electronics11060898
[24]   Kim, H., & Lee, K. (2022). IIoT Malware Detection Using Edge Computing and Deep Learning for Cyber security in Smart Factories. 
Applied Sciences, 12(15), 7679. 
https://doi.org/10.3390/app12157679
[26]   Yang, G., Tang, C., & Liu, X. (2022). DualAC2NN: Revisiting and Alleviating Alert Fatigue from the Detection Perspective. 
Symmetry, 14(10), 2138. 
https://doi.org/10.3390/sym14102138
[27]   Al-Shurbaji, T., Anbar, M., Manickam, S., Hasbullah, I. H., Alfriehat, N., Alabsi, B. A., Alzighaibi, A. R., & Hashim, H. (2023). Deep Learning-Based Intrusion Detection System for Detecting IoT Botnet Attacks: A Review. 
10.1109/ACCESS.2025.352671
[29]   Quintero-Bonilla, S., & Martín del Rey, A. (2020). A New Proposal on the Advanced Persistent Threat: A Survey. 
Applied Sciences, 10(11), 3874. 
https://doi.org/10.3390/app10113874
[30]   Sarker, I. H., Abushark, Y. B., Alsolami, F., & Khan, A. I. (2020). IntruDTree: A Machine Learning Based Cyber Security Intrusion Detection Model. 
Symmetry, 12(5), 754. 
https://doi.org/10.3390/sym12050754
[31]   Shaukat, K., Luo, S., Varadharajan, V., Hameed, I. A., Chen, S., Liu, D., & Li, J. (2020). Performance Comparison and Current Challenges of Using Machine Learning Techniques in Cyber security. 
Energies, 13(10), 2509. 
https://doi.org/10.3390/en13102509
[32]   Al-Mhiqani, M. N., Ahmad, R., Abidin, Z. Z., Yassin, W., Hassan, A., Abdulkareem, K. H., Ali, N. S., & Yunos, Z. (2020). A Review of Insider Threat Detection: Classification, Machine Learning Techniques, Datasets, Open Challenges, and Recommendations. 
Applied Sciences, 10(15), 5208. 
https://doi.org/10.3390/app10155208.
[33]   Alsoufi, M. A., Razak, S., Md Siraj, M., Nafea, I., Ghaleb, F. A., Saeed, F., & Nasser, M. (2021). Anomaly-Based Intrusion Detection Systems in IoT Using Deep Learning: A Systematic Literature Review. 
Applied Sciences, 11(18), 8383. 
https://doi.org/10.3390/app11188383.
[34]   Khater, B. S., Abdul Wahab, A. W. B., Idris, M. Y. I. B., Hussain, M. A., & Ibrahim, A. A. (2019). A Lightweight Perceptron-Based Intrusion Detection System for Fog Computing. 
Applied Sciences, 9(1), 178. 
https://doi.org/10.3390/app9010178.
[35]   Yang, Y., Zheng, K., Wu, C., Niu, X., & Yang, Y. (2019). 
Building an Effective Intrusion Detection System Using the Modified Density Peak Clustering Algorithm and Deep Belief Networks. 
Applied Sciences, 9(2), 238. 
https://doi.org/10.3390/app9020238.
[36]   Hafsa, M., & Jemili, F. (2019). Comparative Study between Big Data Analysis Techniques in Intrusion Detection. 
Big Data and Cognitive Computing, 3(1), 1. 
https://doi.org/10.3390/bdcc3010001
[37]   Bukhowah, R., Aljughaiman, A., & Rahman, M. M. H. (2024). Detection of DoS Attacks for IoT in Information-Centric Networks Using Machine Learning: Opportunities, Challenges, and Future Research Directions. 
Electronics, 13(6), 1031. 
https://doi.org/10.3390/electronics13061031
[38]    Ahmed, U., Nazir, M., Sarwar, A., Ali, T., Aggoune, E.-H. M., Shahzad, T., & Khan, M. A. (2025). Signature-based intrusion detection using machine learning and deep learning approaches empowered with fuzzy clustering. Scientific Reports, 15, Article 1726. Nature Portfolio. https://www.nature.com/articles/s41598-025-85866-7
                                                                                                                [39]   Kim, A., Park, M., & Lee, D. H. (2020). AI-IDS: Application of deep learning to real-time web intrusion detection. IEEE Access, 8, 83946-83959.   https://www.researchgate.net/publication/340571787_AI-IDS_Application_of_Deep_Learning_to_Realtime_Web_Intrusion_Detection
                                                                                                                [40]   Qazi, E. U. H., Faheem, M. H., & Zia, T. (2023). HDLNIDS: Hybrid deep-learning-based network intrusion detection system. 
Applied Sciences, 13(8), 4921. 
https://doi.org/10.3390/app13084921
[42]   Sheikhi, S., & Kostakos, P. (2022). A novel anomaly-based intrusion detection model using PSOGWO-optimized BP neural network and GA-based feature selection. 
Sensors, 22(23), 9318. 
https://doi.org/10.3390/s22239318
[43]   ai, K. Z., & Fossaceca, J. M. (2025). EM-AUC: A novel algorithm for evaluating anomaly-based network intrusion detection systems. 
Sensors, 25(1), 78. 
https://doi.org/10.3390/s25010078
[44]   Altulaihan, E., Almaiah, M.A., & Aljughaiman, A. (2024). Anomaly Detection IDS for Detecting DoS Attacks in IoT Networks Based on Machine Learning Algorithms. 
Sensors, 24(2), 713. 
https://doi.org/10.3390/s24020713
[45]   Ali, M. L., Thakur, K., Schmeelk, S., Debello, J., & Dragos, D. (2025). Deep learning vs. machine learning for intrusion detection in computer networks: A comparative study. 
Applied Sciences, 15(4), 1903. 
https://doi.org/10.3390/app15041903
[46]   Farzaan, M. A. M., Ghanem, M. C., El-Hajjar, A., & Ratnayake, D. N. (2024). AI-Enabled System for Efficient and Effective Cyber Incident Detection and Response in Cloud Environments. Published on arXiv
https://arxiv.org/abs/2404.05602v4
                                                                                                                                                                                                                                 [48]   ly, A., Hamad, A. M., Al-Qutt, M., & Fayez, M. (2025). Real-time multi-class threat detection and adaptive deception in Kubernetes environments. 
Scientific Reports, 15, Article 91606. 
https://doi.org/10.1038/s41598-025-91606-8
                                                                                                                 [49]   González-Granadillo, G., González-Zarzosa, S., & Diaz, R. (2021). 
Security Information and Event Management (SIEM): Analysis, Trends, and Usage in Critical Infrastructures. 
Sensors, 21(14), 4759. 
https://doi.org/10.3390/s21144759.
[50]   González-Granadillo, G., González-Zarzosa, S., & Diaz, R. (2021). 
Security Information and Event Management (SIEM): Analysis, Trends, and Usage in Critical Infrastructures. 
Sensors, 21(14), 4759. 
https://doi.org/10.3390/s21144759.