• Home
  • Browse
    • Current Issue
    • By Issue
    • By Author
    • By Subject
    • Author Index
    • Keyword Index
  • Journal Info
    • About Journal
    • Aims and Scope
    • Editorial Board
    • Publication Ethics
    • Peer Review Process
  • Guide for Authors
  • Submit Manuscript
  • Contact Us
 
  • Login
  • Register
Home Articles List Article Information
  • Save Records
  • |
  • Printable Version
  • |
  • Recommend
  • |
  • How to cite Export to
    RIS EndNote BibTeX APA MLA Harvard Vancouver
  • |
  • Share Share
    CiteULike Mendeley Facebook Google LinkedIn Twitter
Journal of Computing and Communication
arrow Articles in Press
arrow Current Issue
Journal Archive
Volume Volume 4 (2025)
Issue Issue 2
Issue Issue 1
Volume Volume 3 (2024)
Volume Volume 2 (2023)
Volume Volume 1 (2022)
kotb, H., Badr, E., Sakr, F. (2025). Recent Studies and A Review about Detection of Cyber Threats in Cloud Security using Artificial Intelligence. Journal of Computing and Communication, 4(2), 13-31. doi: 10.21608/jocc.2025.446635
hussam kotb; Elsayed Badr; Fatma Zaky Sakr. "Recent Studies and A Review about Detection of Cyber Threats in Cloud Security using Artificial Intelligence". Journal of Computing and Communication, 4, 2, 2025, 13-31. doi: 10.21608/jocc.2025.446635
kotb, H., Badr, E., Sakr, F. (2025). 'Recent Studies and A Review about Detection of Cyber Threats in Cloud Security using Artificial Intelligence', Journal of Computing and Communication, 4(2), pp. 13-31. doi: 10.21608/jocc.2025.446635
kotb, H., Badr, E., Sakr, F. Recent Studies and A Review about Detection of Cyber Threats in Cloud Security using Artificial Intelligence. Journal of Computing and Communication, 2025; 4(2): 13-31. doi: 10.21608/jocc.2025.446635

Recent Studies and A Review about Detection of Cyber Threats in Cloud Security using Artificial Intelligence

Article 2, Volume 4, Issue 2, July 2025, Page 13-31  XML PDF (869.08 K)
Document Type: Original Article
DOI: 10.21608/jocc.2025.446635
View on SCiNiTO View on SCiNiTO
Authors
hussam kotb1; Elsayed Badr2; Fatma Zaky Sakr3
1Cairo
2Department of Scientific Computing, Faculty of Computers and Artificial Intelligence, Benha University, Benha, Egypt. The Egyptian School of Data Science (ESDS), Benha, Egypt . Department of Information Systems, College of Information Technology, Misr University for Science and Technology, Giza, Egypt.
3Computer Science Department, Faculty of Computers and Artificial Intelligence, Benha University, 12311, Egypt
Abstract
Cloud computing has significantly transformed the IT industry through cost-efficient solutions, offering scalable Data. In the cloud, data may be more vulnerable than data on on-site premises. However, its rapid adoption has also introduced new cyber security risks as systems become increasingly vulnerable to sophisticated attacks. Traditional Intrusion Detection Systems (IDS) often face challenges in identifying and mitigating advanced persistent threats, zero-day exploits, and other real-time cyber threats, especially within dynamic cloud environments. This paper analyzes and evaluates the detection of cyber threats in cloud security, focusing on challenges related to recognition, aggregation, and dissemination within user system environments. The research comprehensively review recent studies have leveraged artificial intelligence (AI) methodologies to enhance cyber threat detection. Different deep learning and machine learning approaches are compared based on multiple optimization criteria, including dataset characteristics, simulation environments, real-world deployments, scalability, detection accuracy, coverage of threat types, and overall system performance. Our primary purpose is to offer ideas for the latest progression in cyber-attacks detection in AI, identifying the limitations, open research questions and suggesting potential enhancement for unresolved security challenges.
Keywords
Deep Learning; Machine Learning; Cyber Threats; Intrusion Detection; Cloud Security
References

References

[1]     Deshmukh, A., & Ravulakollu, K. (2024). An Efficient CNN-Based Intrusion Detection System for IoT: Use Case Towards Cybersecurity. Technologies, 12(10), 203. https://doi.org /10.3390/ technologies12100203).

[2]     Alshdadi, A. A., Almazroi, A. A., Ayub, N., Lytras, M. D., Alsolami, E., & Alsubaei, F. S. (2024). Big Data-Driven Deep Learning Ensembler for DDoS Attack Detection. Future Internet, 16(12), 458. https://doi.org/10.3390/fi16120458.

[3]     Amamra, A., & Terrelonge, V. (2025). Multiple Kernel Transfer Learning for Enhancing Network Intrusion Detection in Encrypted and Heterogeneous Network Environments. Electronics, 14(1), 80. https://doi.org/10.3390/electronics14010080.

[4]     Li, L., Lu, Y., Yang, G., & Yan, X. (2024). End-to-End Network Intrusion Detection Based on Contrastive Learning. Sensors, 24(7), 2122. https://doi.org/10.3390/s24072122.

[5]     Jamoos, M., Mora, A. M., AlKhanafseh, M., & Surakhi, O. (2024). A Comparative Analysis of the TDCGAN Model for Data Balancing and Intrusion Detection. Signals, 5(3), 580-596. https://doi.org/10.3390/signals5030032.

[6]     Ahmed, Y., Azad, M. A., & Asyhari, T. (2024). Rapid Forecasting of Cyber Events Using Machine Learning-Enabled Features. Information, 15(1), 36. https://doi.org/10.3390/info15010036.

[7]     Becerra-Suarez, F. L., Fernández-Roman, I., & Forero, M. G. (2024). Improvement of Distributed Denial of Service Attack Detection through Machine Learning and Data Processing. Mathematics, 12(9), 1294. https://doi.org/10.3390/math12091294.

[8]     Rasheed, M., Saeed, F., Almazroi, A. A., Alsubaei, F. S., & Almazroi, A. A. (2024). Enhancing Intrusion Detection Systems Using a Deep Learning and Data Augmentation Approach. Systems, 12(3), 79. https://doi.org/10.3390/systems12030079

[9]     Attou, H., Mohy-eddine, M., Guezzaz, A., Benkirane, S., Azrour, M., Alabdultif, A., & Almusallam, N. (2023). Towards an Intelligent Intrusion Detection System to Detect Malicious Activities in Cloud Computing. Applied Sciences, 13(17), 9588. https://doi.org/10.3390/app13179588

[10]   Alrefaei, A., & Ilyas, M. (2024). Using Machine Learning Multiclass Classification Technique to Detect IoT Attacks in Real Time. Sensors, 24(14), 4516. https://doi.org/10.3390/s24144516

[11]   Morfino, V., & Rampone, S. (2020). Towards Near-Real-Time Intrusion Detection for IoT Devices using Supervised Learning and Apache Spark. Electronics, 9(3), 444. https://doi.org/10.3390/electronics9030444

[12]   deh, A., & Abu Taleb, A. (2023). Ensemble-Based Deep Learning Models for Enhancing IoT Intrusion Detection. Applied Sciences, 13(21), 11985. https://doi.org/10.3390/app132111985

[13]   Musleh, D., Alotaibi, M., Alhaidari, F., Rahman, A., & Mohammad, R. M. (2023). Intrusion Detection System Using Feature Extraction with Machine Learning Algorithms in IoT. J. Sens. Actuator Netw., 12(2), 29. https://doi.org/10.3390/jsan12020029

[14]   Chaganti, R., Suliman, W., Ravi, V., & Dua, A. (2023). Deep Learning Approach for SDN-Enabled Intrusion Detection System in IoT Networks. Information, 14(1), 41. https://doi.org/10.3390/info14010041

[15]   Alosaimi, S., & Almutairi, S. M. (2023). An Intrusion Detection System Using BoT-IoT. Applied Sciences, 13(9), 5427. https://doi.org/10.3390/app13095427

[16]   Shah, H., Shah, D., Jadav, N. K., Gupta, R., Tanwar, S., Alfarraj, O., Tolba, A., Raboaca, M. S., & Marina, V. (2023). Deep Learning-Based Malicious Smart Contract and Intrusion Detection System for IoT Environment. Mathematics, 11(2), 418. https://doi.org/10.3390/math11020418

[17]   Nguyen, X.-H., Nguyen, X.-D., Huynh, H.-H., & Le, K.-H. (2022). Realguard: A Lightweight Network Intrusion Detection System for IoT Gateways. Sensors, 22(2), 432. https://doi.org/10.3390/s22020432

[18]   Chaganti, R., Mourade, A., Ravi, V., Vemprala, N., Dua, A., & Bhushan, B. (2022). A Particle Swarm Optimization and Deep Learning Approach for Intrusion Detection System in Internet of Medical Things. Sustainability, 14(19), 12828. https://doi.org/10.3390/su141912828

[19]   Almaiah, M. A., Almomani, O., Alsaaidah, A., Al-Otaibi, S., Bani-Hani, N., Al Hwaitat, A. K., Al-Zahrani, A., Lutfi, A., Bani Awad, A., & Aldhyani, T. H. H. (2022). Performance Investigation of Principal Component Analysis for Intrusion Detection System Using Different Support Vector Machine Kernels. Electronics, 11(21), 3571. https://doi.org/10.3390/electronics11213571

[20]   Alghamdi, R., & Bellaiche, M. (2022). Evaluation and Selection Models for Ensemble Intrusion Detection Systems in IoT. IoT, 3(2), 285–314. https://doi.org/10.3390/iot3020017

[21]   Gautam, S., Henry, A., Zuhair, M., Rashid, M., Javed, A. R., & Maddikunta, P. K. R. (2022). A Composite Approach of Intrusion Detection Systems: Hybrid RNN and Correlation-Based Feature Optimization. Electronics, 11(21), 3529. https://doi.org/10.3390/electronics11213529

[22]   Fu, Y., Du, Y., Cao, Z., Li, Q., & Xiang, W. (2022). A Deep Learning Model for Network Intrusion Detection with Imbalanced Data. Electronics, 11(6), 898. https://doi.org/10.3390/electronics11060898

[23]   Le, K.-H., Nguyen, M.-H., Tran, T.-D., & Tran, N.-D. (2022). IMIDS: An Intelligent Intrusion Detection System against Cyber Threats in IoT. Electronics, 11(4), 524. https://doi.org/10.3390/electronics11040524

[24]   Kim, H., & Lee, K. (2022). IIoT Malware Detection Using Edge Computing and Deep Learning for Cyber security in Smart Factories. Applied Sciences, 12(15), 7679. https://doi.org/10.3390/app12157679

[25]   https://link.springer.com/chapter/10.1007/978-981-19-0011-2_46

[26]   Yang, G., Tang, C., & Liu, X. (2022). DualAC2NN: Revisiting and Alleviating Alert Fatigue from the Detection Perspective. Symmetry, 14(10), 2138. https://doi.org/10.3390/sym14102138

[27]   ​Al-Shurbaji, T., Anbar, M., Manickam, S., Hasbullah, I. H., Alfriehat, N., Alabsi, B. A., Alzighaibi, A. R., & Hashim, H. (2023). Deep Learning-Based Intrusion Detection System for Detecting IoT Botnet Attacks: A Review. 10.1109/ACCESS.2025.352671

[28]   Alshahrani, H. M. (2021). CoLL-IoT: A Collaborative Intruder Detection System for Internet of Things Devices. Electronics, 10(7), 848. https://doi.org/10.3390/electronics10070848

[29]   Quintero-Bonilla, S., & Martín del Rey, A. (2020). A New Proposal on the Advanced Persistent Threat: A Survey. Applied Sciences, 10(11), 3874. https://doi.org/10.3390/app10113874

[30]   Sarker, I. H., Abushark, Y. B., Alsolami, F., & Khan, A. I. (2020). IntruDTree: A Machine Learning Based Cyber Security Intrusion Detection Model. Symmetry, 12(5), 754. https://doi.org/10.3390/sym12050754

[31]   Shaukat, K., Luo, S., Varadharajan, V., Hameed, I. A., Chen, S., Liu, D., & Li, J. (2020). Performance Comparison and Current Challenges of Using Machine Learning Techniques in Cyber security. Energies, 13(10), 2509. https://doi.org/10.3390/en13102509

[32]   Al-Mhiqani, M. N., Ahmad, R., Abidin, Z. Z., Yassin, W., Hassan, A., Abdulkareem, K. H., Ali, N. S., & Yunos, Z. (2020). A Review of Insider Threat Detection: Classification, Machine Learning Techniques, Datasets, Open Challenges, and Recommendations. Applied Sciences, 10(15), 5208. https://doi.org/10.3390/app10155208.

[33]   Alsoufi, M. A., Razak, S., Md Siraj, M., Nafea, I., Ghaleb, F. A., Saeed, F., & Nasser, M. (2021). Anomaly-Based Intrusion Detection Systems in IoT Using Deep Learning: A Systematic Literature Review. Applied Sciences, 11(18), 8383. https://doi.org/10.3390/app11188383.

[34]   Khater, B. S., Abdul Wahab, A. W. B., Idris, M. Y. I. B., Hussain, M. A., & Ibrahim, A. A. (2019). A Lightweight Perceptron-Based Intrusion Detection System for Fog Computing. Applied Sciences, 9(1), 178. https://doi.org/10.3390/app9010178.

[35]   Yang, Y., Zheng, K., Wu, C., Niu, X., & Yang, Y. (2019). Building an Effective Intrusion Detection System Using the Modified Density Peak Clustering Algorithm and Deep Belief Networks. Applied Sciences, 9(2), 238. https://doi.org/10.3390/app9020238.

[36]   Hafsa, M., & Jemili, F. (2019). Comparative Study between Big Data Analysis Techniques in Intrusion Detection. Big Data and Cognitive Computing, 3(1), 1. https://doi.org/10.3390/bdcc3010001

[37]   Bukhowah, R., Aljughaiman, A., & Rahman, M. M. H. (2024). Detection of DoS Attacks for IoT in Information-Centric Networks Using Machine Learning: Opportunities, Challenges, and Future Research Directions. Electronics, 13(6), 1031. https://doi.org/10.3390/electronics13061031

[38]    Ahmed, U., Nazir, M., Sarwar, A., Ali, T., Aggoune, E.-H. M., Shahzad, T., & Khan, M. A. (2025). Signature-based intrusion detection using machine learning and deep learning approaches empowered with fuzzy clustering. Scientific Reports, 15, Article 1726. Nature Portfolio. https://www.nature.com/articles/s41598-025-85866-7

[39]   Kim, A., Park, M., & Lee, D. H. (2020). AI-IDS: Application of deep learning to real-time web intrusion detection. IEEE Access, 8, 83946-83959.   https://www.researchgate.net/publication/340571787_AI-IDS_Application_of_Deep_Learning_to_Realtime_Web_Intrusion_Detection

[40]   ​Qazi, E. U. H., Faheem, M. H., & Zia, T. (2023). HDLNIDS: Hybrid deep-learning-based network intrusion detection system. Applied Sciences, 13(8), 4921. https://doi.org/10.3390/app13084921

[41]   ​Balajee, R. M., & Kannan, M. K. J. (2023). Intrusion detection on AWS cloud through hybrid deep learning algorithm. Electronics, 12(6), 1423. https://doi.org/10.3390/electronics12061423

[42]   Sheikhi, S., & Kostakos, P. (2022). A novel anomaly-based intrusion detection model using PSOGWO-optimized BP neural network and GA-based feature selection. Sensors, 22(23), 9318. https://doi.org/10.3390/s22239318

[43]   ai, K. Z., & Fossaceca, J. M. (2025). EM-AUC: A novel algorithm for evaluating anomaly-based network intrusion detection systems. Sensors, 25(1), 78. https://doi.org/10.3390/s25010078

[44]   ​Altulaihan, E., Almaiah, M.A., & Aljughaiman, A. (2024). Anomaly Detection IDS for Detecting DoS Attacks in IoT Networks Based on Machine Learning Algorithms. Sensors, 24(2), 713. https://doi.org/10.3390/s24020713

[45]   Ali, M. L., Thakur, K., Schmeelk, S., Debello, J., & Dragos, D. (2025). Deep learning vs. machine learning for intrusion detection in computer networks: A comparative study. Applied Sciences, 15(4), 1903. https://doi.org/10.3390/app15041903

[46]   Farzaan, M. A. M., Ghanem, M. C., El-Hajjar, A., & Ratnayake, D. N. (2024). AI-Enabled System for Efficient and Effective Cyber Incident Detection and Response in Cloud Environments. Published on arXivhttps://arxiv.org/abs/2404.05602v4

[47]   Smith, J., & Kevin, E. (2025). AI-Powered Intrusion Detection Systems for Next-Generation Cloud Security. ResearchGate. Retrieved from https://www.researchgate.net/publication/390448273

[48]   ly, A., Hamad, A. M., Al-Qutt, M., & Fayez, M. (2025). Real-time multi-class threat detection and adaptive deception in Kubernetes environments. Scientific Reports, 15, Article 91606. https://doi.org/10.1038/s41598-025-91606-8

[49]   González-Granadillo, G., González-Zarzosa, S., & Diaz, R. (2021). Security Information and Event Management (SIEM): Analysis, Trends, and Usage in Critical Infrastructures. Sensors, 21(14), 4759. https://doi.org/10.3390/s21144759.

[50]   González-Granadillo, G., González-Zarzosa, S., & Diaz, R. (2021). Security Information and Event Management (SIEM): Analysis, Trends, and Usage in Critical Infrastructures. Sensors, 21(14), 4759. https://doi.org/10.3390/s21144759.

[51]    https://unsworks.unsw.edu.au/items/4dc0e35c-6196-4c9d-945a-c50b981e5955  accessed in [01-02-2025]

[52]   https://www.stratosphereips.org/datasets-iot23 accessed in [10-02-2025]

[53]   https://www.unb.ca/cic/datasets/ids-2017.html accessed in [20-02-2025]

[54]   https://www.unb.ca/cic/datasets/ids-2018.html accessed in [21-02-2025]

[55]   https://archive.ics.uci.edu/ml/datasets/kdd%2Bcup%2B1999%2Bdata accessed in [22-02-2025]

[56]   https://research.unsw.edu.au/projects/adfa-ids-datasets accessed in [23-02-2025]

[57]   https://www.unb.ca/cic/datasets/ddos-2019.html  accessed in [24-02-2025]

[58]   https://ieee-dataport.org/documents/nsl-kdd-0 access in [25-02-2025]

[59]   https://www.unb.ca/cic/datasets/ddos-2019.html accessed in [25-02-2025]

[60]   https://ieee-dataport.org/documents/5g-nidd-comprehensive-network-intrusion-detection-dataset-generated-over-5g-wireless accessed in [26-02-2025]

[61]   https://github.com/nsol-nmsu/FML-Network accessed in [26-02-2025]

[62]   https://archive.ics.uci.edu/ml/datasets/kdd%2Bcup%2B1999%2Bdata accessed in [26-02-2025]

[63]   https://research.unsw.edu.au/projects/adfa-ids-datasets accessed in [27-02-2025]

[64]   https://www.impactcybertrust.org/dataset_view?idDataset=940  accessed in [28-02-2025]

[65]   https://schonlau.net/intrusion.html accessed in [01-03-2025]

[66]   https://kilthub.cmu.edu/articles/dataset/Insider_Threat_Test_Dataset/12841247 accessed in [01-03-2025]

Statistics
Article View: 103
PDF Download: 29
Home | Glossary | News | Aims and Scope | Sitemap
Top Top

Journal Management System. Designed by NotionWave.