• Home
  • Browse
    • Current Issue
    • By Issue
    • By Author
    • By Subject
    • Author Index
    • Keyword Index
  • Journal Info
    • About Journal
    • Aims and Scope
    • Editorial Board
    • Publication Ethics
    • Peer Review Process
  • Guide for Authors
  • Submit Manuscript
  • Contact Us
 
  • Login
  • Register
Home Articles List Article Information
  • Save Records
  • |
  • Printable Version
  • |
  • Recommend
  • |
  • How to cite Export to
    RIS EndNote BibTeX APA MLA Harvard Vancouver
  • |
  • Share Share
    CiteULike Mendeley Facebook Google LinkedIn Twitter
Journal of Computing and Communication
arrow Articles in Press
arrow Current Issue
Journal Archive
Volume Volume 4 (2025)
Volume Volume 3 (2024)
Issue Issue 2
Issue Issue 1
Volume Volume 2 (2023)
Volume Volume 1 (2022)
Farouk, M., Shaker, N., AbdElminaam, D., Elrashidy, O., Mandour, L., Mesbah, M., Walid, J., Ahmed, M., Attia, R., Ahmed, N., Elazab, R. (2024). Bitcoin_ML: An Efficient Framework for Bitcoin Price Prediction Using Machine Learning. Journal of Computing and Communication, 3(1), 70-87. doi: 10.21608/jocc.2024.339923
Maged Farouk; Nashwa Shaker; Diaa s AbdElminaam; Omnia Elrashidy; Lana Mandour; Malak Mesbah; Jana Walid; Mariam Ahmed; Rawan Attia; Nouran Ahmed; Reda Elazab. "Bitcoin_ML: An Efficient Framework for Bitcoin Price Prediction Using Machine Learning". Journal of Computing and Communication, 3, 1, 2024, 70-87. doi: 10.21608/jocc.2024.339923
Farouk, M., Shaker, N., AbdElminaam, D., Elrashidy, O., Mandour, L., Mesbah, M., Walid, J., Ahmed, M., Attia, R., Ahmed, N., Elazab, R. (2024). 'Bitcoin_ML: An Efficient Framework for Bitcoin Price Prediction Using Machine Learning', Journal of Computing and Communication, 3(1), pp. 70-87. doi: 10.21608/jocc.2024.339923
Farouk, M., Shaker, N., AbdElminaam, D., Elrashidy, O., Mandour, L., Mesbah, M., Walid, J., Ahmed, M., Attia, R., Ahmed, N., Elazab, R. Bitcoin_ML: An Efficient Framework for Bitcoin Price Prediction Using Machine Learning. Journal of Computing and Communication, 2024; 3(1): 70-87. doi: 10.21608/jocc.2024.339923

Bitcoin_ML: An Efficient Framework for Bitcoin Price Prediction Using Machine Learning

Article 6, Volume 3, Issue 1, January 2024, Page 70-87  XML PDF (1.87 MB)
Document Type: Original Article
DOI: 10.21608/jocc.2024.339923
View on SCiNiTO View on SCiNiTO
Authors
Maged Farouk1; Nashwa Shaker1; Diaa s AbdElminaam email orcid 2; Omnia Elrashidy1; Lana Mandour1; Malak Mesbah1; Jana Walid1; Mariam Ahmed1; Rawan Attia1; Nouran Ahmed1; Reda Elazab1
1Department of Business Information Systems, Faculty of Business, Alamein International University, Alamein, Egypt
2Department of Data Science , Faculty of Computer Science , Misr International University , Cairo , Egypt
Abstract
Econometrics can be used to understand and forecast price movements, assess market efficiency, and explore the factors influencing Bitcoin's value and adaptation.
Econometrics is related to bitcoin in seven categories: price analysis and prediction, market efficiency, determination of Bitcoin prices, risk analysis, adaptation and network effects, causality tests, and simulation and stress. Testing these analyses can be invaluable for policymakers, investors, and financial institutions interested in the economics of digital currencies.
Bitcoin price prediction in machine learning has many challenges that have deep roots in 2 main properties: cryptocurrencies and complexities in the Machine Learning models.
Many problems are associated with machine learning for bitcoin price prediction, such as overfitting, data quality and availability, latent variables, model interpretability, computational complexity, dynamic adaptation, market manipulation, anomalies, data snooping bias risk, and time horizon mismatch. In the paper, we proposed an efficient framework for the prediction of bitcoin using nine different machine learning algorithms (linear Regression, random forest, adaboost, tree, KNN, gradient boosting, constant, neural network, SVM) on five different datasets. The results revealed that linear Regression emerged as the optimal model for the first data set. In the second data set, the random forest model demonstrated superior performance. The third data set exhibited the highest efficacy when the Adaboost model was employed. The fourth data set yielded the best outcomes with the random forest model, while linear Regression was the most effective choice for the final data set. 
Keywords
Bitcoin Price Prediction; Machine Learning; Artificial Intelligence; Algorithm; Linear Regression Random Forest
References
[1]     Baltagi, B. H., & Baltagi, B. H. (2011). What Is Econometrics? (pp. 3-12). Springer Berlin Heidelberg.

[2]     Gujarati, D. N., & Porter, D. C. (2009). Basic econometrics. McGraw-hill.

[3]     Stock, J. H., & Watson, M. W. (2020). Introduction to econometrics. Pearson.

[4]     Pintelas, E., Livieris, I. E., Stavroyiannis, S., Kotsilieris, T., & Pintelas, P. (2020). Investigating the problem of cryptocurrency price prediction: a deep learning approach. In Artificial Intelligence Applications and Innovations: 16th IFIP WG 12.5 International Conference, AIAI 2020, Neos Marmaras, Greece, June 5–7, 2020, Proceedings, Part II 16 (pp. 99-110). Springer International Publishing.

[5]     Poongodi, M., Vijayakumar, V., & Chilamkurti, N. (2020). Bitcoin price prediction using ARIMA

model. International Journal of Internet Technology and Secured Transactions, 10(4), 396-406.

[6]     Awoke, T., Rout, M., Mohanty, L., & Satapathy, S. C. (2020). Bitcoin price prediction and

analysis using deep learning models. In Communication Software and Networks: Proceedings of

INDIA 2019 (pp.

[7]     El Naqa, I., & Murphy, M. J. (2015). What is machine learning? (pp. 3-11). Springer International Publishing.

[8]     Mohri, M., Rostamizadeh, A., & Talwalkar, A. (2018). Foundations of machine learning. MIT

press.

[9]     Baştanlar, Y., & Özuysal, M. (2014). Introduction to machine learning. miRNomics: MicroRNA

biology and computational analysis, 105-128.

[10]   Chen, Z., Li, C., & Sun, W. (2020). Bitcoin price prediction using machine learning: An

approach to sample dimension engineering. Journal of Computational and Applied

Mathematics, 365, 112395.

[11]   McNally, S., Roche, J., & Caton, S. (2018, March). Predicting the price of bitcoin using

machine learning. In 2018 26th euromicro international conference on parallel, distributed and

network-based processing (PDP) (pp. 339-343). IEEE.

[12]   Ji, S., Kim, J., & Im, H. (2019). A comparative study of bitcoin price prediction using deep

learning. Mathematics, 7(10), 898.

[13]   McNally, S., Roche, J., & Caton, S. (2018, March). Predicting the price of bitcoin using machine learning. In 2018 26th euromicro international conference on parallel, distributed and network-based processing (PDP) (pp. 339-343). IEEE.

[14]   Kavitha, H., Sinha, U. K., & Jain, S. S. (2020, January). Performance evaluation of machine learning algorithms for bitcoin price prediction. In 2020 Fourth International Conference on Inventive Systems and Control (ICISC) (pp. 110-114). IEEE.

[15]   Rane, P. V., & Dhage, S. N. (2019, March). Systematic erudition of bitcoin price prediction using machine learning techniques. In 2019 5th International Conference on Advanced Computing & Communication Systems (ICACCS) (pp. 594-598). IEEE.

[16]   Chen, J. (2023). Analysis of bitcoin price prediction using machine learning. Journal of Risk and Financial Management, 16(1), 51.

[17]   Phaladisailoed, T., & Numnonda, T. (2018, July). Machine learning models comparison for bitcoin price prediction. In 2018 10th International Conference on Information Technology and Electrical Engineering (ICITEE) (pp. 506-511). IEEE.

[18]   Velankar, S., Valecha, S., & Maji, S. (2018, February). Bitcoin price prediction using machine learning. In 2018 20th International Conference on Advanced Communication Technology (ICACT) (pp. 144-147). IEEE.

[19]   Maulud, D., & Abdulazeez, A. M. (2020). A review on linear Regression comprehensive in machine learning. Journal of Applied Science and Technology Trends, 1(4), 140-147.

[20]   Rigatti, S. J. (2017). Random forest. Journal of Insurance Medicine, 47(1), 31-39.

[21]   Ying, C., Qi-Guang, M., Jia-Chen, L., & Lin, G. (2013). Advance and prospects of AdaBoost algorithm. Acta Automatica Sinica, 39(6), 745-758.

[22]   Freund, Y., & Mason, L. (1999, June). The alternating decision tree learning algorithm. In icml (Vol. 99, pp. 124-133).

[23]   Natekin, A., & Knoll, A. (2013). Gradient boosting machines, a tutorial. Frontiers in neurorobotics, 7, 21.

[24]   Suthaharan, S., & Suthaharan, S. (2016). Support vector machine. Machine learning models and algorithms for big data classification: thinking with examples for effective learning, 207-235.

[25]   Sun, S., & Huang, R. (2010, August). An adaptive k-nearest neighbor algorithm. In 2010 seventh international conference on fuzzy systems and knowledge discovery (Vol. 1, pp. 91-94). IEEE.

[26]   Ding, S., Su, C., & Yu, J. (2011). An optimizing BP neural network algorithm based on genetic Algorithm. Artificial intelligence review, 36, 153-162.

[27]   Binev, P., Cohen, A., Dahmen, W., DeVore, R., Temlyakov, V., & Bartlett, P. (2005). Universal algorithms for learning theory part i: Piecewise constant functions. Journal of Machine Learning Research, 6(9).

[28]   Cameron, A. C., & Windmeijer, F. A. (1997). An R-squared measure of goodness of fit for some common nonlinear regression models. Journal of econometrics, 77(2), 329-342.

[29]   Chicco, D., Warrens, M. J., & Jurman, G. (2021). The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. PeerJ Computer Science, 7, e623.

[30]   Tayman, J., & Swanson, D. A. (1999). On the validity of MAPE as a measure of population forecast accuracy. Population Research and Policy Review, 18, 299-322.

Statistics
Article View: 592
PDF Download: 578
Home | Glossary | News | Aims and Scope | Sitemap
Top Top

Journal Management System. Designed by NotionWave.