[1] Baltagi, B. H., & Baltagi, B. H. (2011). What Is Econometrics? (pp. 3-12). Springer Berlin Heidelberg.
[2] Gujarati, D. N., & Porter, D. C. (2009). Basic econometrics. McGraw-hill.
[3] Stock, J. H., & Watson, M. W. (2020). Introduction to econometrics. Pearson.
[4] Pintelas, E., Livieris, I. E., Stavroyiannis, S., Kotsilieris, T., & Pintelas, P. (2020). Investigating the problem of cryptocurrency price prediction: a deep learning approach. In Artificial Intelligence Applications and Innovations: 16th IFIP WG 12.5 International Conference, AIAI 2020, Neos Marmaras, Greece, June 5–7, 2020, Proceedings, Part II 16 (pp. 99-110). Springer International Publishing.
[5] Poongodi, M., Vijayakumar, V., & Chilamkurti, N. (2020). Bitcoin price prediction using ARIMA
model. International Journal of Internet Technology and Secured Transactions, 10(4), 396-406.
[6] Awoke, T., Rout, M., Mohanty, L., & Satapathy, S. C. (2020). Bitcoin price prediction and
analysis using deep learning models. In Communication Software and Networks: Proceedings of
INDIA 2019 (pp.
[7] El Naqa, I., & Murphy, M. J. (2015). What is machine learning? (pp. 3-11). Springer International Publishing.
[8] Mohri, M., Rostamizadeh, A., & Talwalkar, A. (2018). Foundations of machine learning. MIT
press.
[9] Baştanlar, Y., & Özuysal, M. (2014). Introduction to machine learning. miRNomics: MicroRNA
biology and computational analysis, 105-128.
[10] Chen, Z., Li, C., & Sun, W. (2020). Bitcoin price prediction using machine learning: An
approach to sample dimension engineering. Journal of Computational and Applied
Mathematics, 365, 112395.
[11] McNally, S., Roche, J., & Caton, S. (2018, March). Predicting the price of bitcoin using
machine learning. In 2018 26th euromicro international conference on parallel, distributed and
network-based processing (PDP) (pp. 339-343). IEEE.
[12] Ji, S., Kim, J., & Im, H. (2019). A comparative study of bitcoin price prediction using deep
learning. Mathematics, 7(10), 898.
[13] McNally, S., Roche, J., & Caton, S. (2018, March). Predicting the price of bitcoin using machine learning. In 2018 26th euromicro international conference on parallel, distributed and network-based processing (PDP) (pp. 339-343). IEEE.
[14] Kavitha, H., Sinha, U. K., & Jain, S. S. (2020, January). Performance evaluation of machine learning algorithms for bitcoin price prediction. In 2020 Fourth International Conference on Inventive Systems and Control (ICISC) (pp. 110-114). IEEE.
[15] Rane, P. V., & Dhage, S. N. (2019, March). Systematic erudition of bitcoin price prediction using machine learning techniques. In 2019 5th International Conference on Advanced Computing & Communication Systems (ICACCS) (pp. 594-598). IEEE.
[16] Chen, J. (2023). Analysis of bitcoin price prediction using machine learning. Journal of Risk and Financial Management, 16(1), 51.
[17] Phaladisailoed, T., & Numnonda, T. (2018, July). Machine learning models comparison for bitcoin price prediction. In 2018 10th International Conference on Information Technology and Electrical Engineering (ICITEE) (pp. 506-511). IEEE.
[18] Velankar, S., Valecha, S., & Maji, S. (2018, February). Bitcoin price prediction using machine learning. In 2018 20th International Conference on Advanced Communication Technology (ICACT) (pp. 144-147). IEEE.
[19] Maulud, D., & Abdulazeez, A. M. (2020). A review on linear Regression comprehensive in machine learning. Journal of Applied Science and Technology Trends, 1(4), 140-147.
[20] Rigatti, S. J. (2017). Random forest. Journal of Insurance Medicine, 47(1), 31-39.
[21] Ying, C., Qi-Guang, M., Jia-Chen, L., & Lin, G. (2013). Advance and prospects of AdaBoost algorithm. Acta Automatica Sinica, 39(6), 745-758.
[22] Freund, Y., & Mason, L. (1999, June). The alternating decision tree learning algorithm. In icml (Vol. 99, pp. 124-133).
[23] Natekin, A., & Knoll, A. (2013). Gradient boosting machines, a tutorial. Frontiers in neurorobotics, 7, 21.
[24] Suthaharan, S., & Suthaharan, S. (2016). Support vector machine. Machine learning models and algorithms for big data classification: thinking with examples for effective learning, 207-235.
[25] Sun, S., & Huang, R. (2010, August). An adaptive k-nearest neighbor algorithm. In 2010 seventh international conference on fuzzy systems and knowledge discovery (Vol. 1, pp. 91-94). IEEE.
[26] Ding, S., Su, C., & Yu, J. (2011). An optimizing BP neural network algorithm based on genetic Algorithm. Artificial intelligence review, 36, 153-162.
[27] Binev, P., Cohen, A., Dahmen, W., DeVore, R., Temlyakov, V., & Bartlett, P. (2005). Universal algorithms for learning theory part i: Piecewise constant functions. Journal of Machine Learning Research, 6(9).
[28] Cameron, A. C., & Windmeijer, F. A. (1997). An R-squared measure of goodness of fit for some common nonlinear regression models. Journal of econometrics, 77(2), 329-342.
[29] Chicco, D., Warrens, M. J., & Jurman, G. (2021). The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. PeerJ Computer Science, 7, e623.
[30] Tayman, J., & Swanson, D. A. (1999). On the validity of MAPE as a measure of population forecast accuracy. Population Research and Policy Review, 18, 299-322.